期刊文献+

基于改进Yolov5的LCD缺陷检测

LCD Defect Detection Based on Improved Yolov5
下载PDF
导出
摘要 为提高液晶显示屏缺陷检测的速度和精度,设计了一种基于深度学习的液晶显示屏缺陷检测系统。针对实时检测系统中的Yolov5检测算法存在对全局信息的提取能力不足问题,在Transformer架构和C3模块基础上构建了C3TR模块并将其加入Yolov5基础模型。实验结果表明,所提出的算法在准确率和召回率上分别达到了90.9%和90.3%,与Yolov5基础算法相比分别提高了4.1%和1.4%。 In order to improve the speed and accuracy of LCD defect detection,this paper designs an system for LCD defect detection based on deep learning.Aiming at the problem that the Yolov5 detection algorithm in the real-time detection system has insufficient ability to extract global information,this paper constructs the C3TR module based on the Transformer architecture and C3 module and adds it to the Yolov5 basic model.Experimental results show that the proposed algorithm reaches 90.9%and 90.3%in accuracy and recall,respectively,which is improved by 4.1%and 1.4%compared with Yolov5 basic algorithm,respectively.
作者 莫文星 刘华珠 MO Wenxing;LIU Huazhu(School of Computer Science and Technology,Dongguan University of Technology,Dongguan 523808,China;International School of Microelectronics,Dongguan University of Technology,Dongguan 523808,China)
出处 《东莞理工学院学报》 2024年第1期53-58,共6页 Journal of Dongguan University of Technology
基金 东莞市科技特派员项目(20221800500112)。
关键词 深度学习 缺陷检测 液晶显示屏 Yolo deep learning defect detection LCD display Yolo
  • 相关文献

参考文献12

二级参考文献103

  • 1李寿杰,宋华军,兴雷,李郑,刘东凯.基于机器视觉的气冰球机器人实验教学系统设计[J].实验技术与管理,2020,37(1):200-204. 被引量:8
  • 2张昱,张健.基于多项式曲面拟合的TFT-LCD斑痕缺陷自动检测技术[J].光电工程,2006,33(10):108-114. 被引量:19
  • 3LU Rongsheng, SHI Yanqiong, LI Qi, et al. AOI Techniques for Surface Defect Inspection [J]. Applied Mechanics and Materials(S1660-9336), 2010, 36: 297-302.
  • 4Nakashima K. Hybrid inspection system for LCD color filter panels [C]// Proceedings of the 10th International Conference on lnstrumentationandMeasurementTechnology, Hamamatsu, Japan, May 10-12, 1994, 2: 689-692.
  • 5Sokolov S M, Treskunov A S. Automatic vision system for final test of liquid crystal displays [C]// Proceedings of the IEEE InternationalConference on Robotics andAntomation, Nice, France, May 12-14, 1992: 1578-1582.
  • 6OH J H, KWAK D M, LEE K B, et al. Line Defect Detection in TFT-LCD Using Directional Filter Bank and Adaptive Multilevel Threshohding [J]. Key Engineering Materials(S1662-9795), 2004, 270/273: 233-238.
  • 7RYU J S, JONG-HWAN, KIM J G, et al. TFT-LCD panel blob-mura inspection using the correlation of wavelet coefficients [C]// IEEE Region 10Conference, ChiangMai, Thailand, Nov21-24, 2004: 219-222.
  • 8LEE J, YOO S. Automatic Detection of Region-Mura Defect in TFT-LCD [J]. IEICE Transactions on Information and Systems(S0916-8532), 2004, 87(10): 2371-2378.
  • 9LU Chijie, TSAI Duming. Automatic Defect Inspection for LCDs Using Singular Value Decomposition [J]. International JournalofAdvanced Manufacturing Technology(S0268-3768), 2005, 25(1/2): 53-61.
  • 10TSAI Duming, HUNG Chungyu. Automatic defect inspection of patterned thin film transistor-liquid crystal display (TFT-LCD) panels using one-dimensional Fourier reconstruction and wavelet decomposition [J]. International Journal of Production Research(S0020-7543), 2005, 43(21): 4589-4607.

共引文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部