期刊文献+

In vivo polydopamine coating of Rhodobacter sphaeroides for enhanced electron transfer

原文传递
导出
摘要 Recent advances in coupling light-harvesting microorganisms with electronic components have led to a new generation of biohybrid devices based on microbial photocatalysts.These devices are limited by the poorly conductive interface between phototrophs and synthetic materials that inhibit charge transfer.This study focuses on overcoming this bottleneck through the metabolically-driven encapsulation of photosynthetic cells with a bio-inspired conductive polymer.Cells of the purple non sulfur bacterium Rhodobacter sphaeroides were coated with a polydopamine(PDA)nanoparticle layer via the self-polymerization of dopamine under anaerobic conditions.The treated cells show preserved light absorption of the photosynthetic pigments in the presence of dopamine concentrations ranging between 0.05–3.5 mM.The thickness and nanoparticle formation of the membrane-associated PDA matrix were further shown to vary with the dopamine concentrations in this range.Compared to uncoated cells,the encapsulated cells show up to a 20-fold enhancement in transient photocurrent measurements under mediatorless conditions.The biologically synthesized PDA can thus act as a matrix for electronically coupling the light-harvesting metabolisms of cells with conductive surfaces.
出处 《Nano Research》 SCIE EI CSCD 2024年第2期875-881,共7页 纳米研究(英文版)
基金 funded by the Fonds National Suisse de la Recherche Scientifique,project Phosbury-Photosynthetic bacteria in Self-assembled Biocompatible coatings for the transduction of energy(Project Nr CRSII5_205925/1) M.G.acknowledges the funding from Fondazione CON IL SUD,Grant“Brains to South 2018”(project number 2018-PDR-00914).
  • 相关文献

参考文献1

二级参考文献2

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部