摘要
The out-of-sample R^(2) is designed to measure forecasting performance without look-ahead bias.However,researchers can hack this performance metric even without multiple tests by constructing a prediction model using the intuition derived from empirical properties that appear only in the test sample.Using ensemble machine learning techniques,we create a virtual environment that prevents researchers from peeking into the intuition in advance when performing out-of-sample prediction simulations.We apply this approach to robust monitoring,exploiting a dynamic shrink-age effect by switching between a proposed forecast and a benchmark.Considering stock return forecasting as an example,we show that the resulting robust monitoring forecast improves the average performance of the proposed forecast by 15%(in terms of mean-squared-error)and reduces the variance of its relative performance by 46%while avoiding the out-of-sample R^(2)-hacking problem.Our approach,as a final touch,can further enhance the performance and stability of forecasts from any models and methods.