期刊文献+

Rational design of large anomalous Nernst effect in Dirac semimetals

原文传递
导出
摘要 Anomalous Nernst effect generates a transverse voltage perpendicular to the temperature gradient.It has several advantages compared with the longitudinal thermoelectricity for energy conversion,such as decoupling of electronic and thermal transports,higher flexibility,and simpler lateral structure.However,a design principle beyond specific materials systems for obtaining a large anomalous Nernst conductivity(ANC)is still absent.In this work,we theoretically demonstrate that a pair of Dirac nodes under a Zeeman field manifests an odd-distributed,double-peak anomalous Hall conductivity curve with respect to the chemical potential and a compensated carrier feature,leading to an enhanced ANC compared with that of a simple Weyl semimetal with two Weyl nodes.Based on first-principles calculations,we then provide two Dirac semimetal candidates,i.e.,Na3Bi and NaTeAu,and show that under a Zeeman field,they exhibit a sizable ANC value of 0.4 Am^(-1)K^(-1) and 1.3 Am^(-1)K^(-1),respectively,near the Fermi level.Such an approach is also applicable to ferromagnetic materials with intrinsic Zeeman splitting,as exemplified by a hypothetical alloy NaFeTe2Au2,exhibiting an ANC as high as 3.7 Am^(-1)K^(-1) at the Fermi level.Our work provides a design principle with a prototype band structure for enhanced ANC pinning at the Fermi level,shedding light on the inverse design of other specific functional materials based on electronic structure.
出处 《npj Computational Materials》 SCIE EI CSCD 2023年第1期258-264,共7页 计算材料学(英文)
基金 This work was supported by the National Key R&D Program of China under Grant No.2019YFA0704900 Guangdong Provincial Key Laboratory for Computational Science and Material Design under Grant No.2019B030301001 the Science,Technology and Innovation Commission of Shenzhen Municipality(No.ZDSYS20190902092905285) Center for Computational Science and Engineering of Southern University of Science and Technology X.S.W.acknowledges financial support from the National Key R&D Program of China under Grant No.2022YFA1403700 and NSFC under Grant No.12074009.
关键词 STRUCTURE Nernst DIRAC
  • 相关文献

参考文献3

二级参考文献30

  • 1C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
  • 2B. A. Bernevig, and S. C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
  • 3S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012). arXiv: 1111.6483.
  • 4Z. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).
  • 5K. Sun, W. V. Liu, A. Hemmerich, and S. Das Sarma, Nat. Phys. 8, 67 (2011). arXiv: 1011.4301.
  • 6B. Singh, A. Sharma, H. Lin, M. Z. Hasan, R. Prasad, and A. Bansil, Phys. Rev. B 86, 115208 (2012). arXiv: 1209.5896.
  • 7X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Phys. Rev. B 83, 205101 (2011). arXiv: 1007.0016.
  • 8H. Weng, Y. Liang, Q. Xu, R. Yu, Z. Fang, X. Dai, and Y. Kawazoe, Phys. Rev. B 92, 045108 (2015). arXiv: 1411.2175.
  • 9Y. Du, B. Wan, D. Wang, L. Sheng, C. G. Duan, and X. Wan, Sci. Rep. 5, 14423 (2015). arXiv: 1411.4394.
  • 10H. S. Alvey, F. L. Gottardo, E. N. Nikolova, and H. M. A1-Hashimi, Nat. Commun. 5, 4786 (2014).

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部