期刊文献+

Circumventing the phonon bottleneck by multiphonon-mediated hot exciton cooling at the nanoscale

原文传递
导出
摘要 Nonradiative processes govern efficiencies of semiconductor nanocrystal(NC)-based devices.A central process is hot exciton cooling,or the nonradiative relaxation of a highly excited electron/hole pair to form a band-edge exciton.Due to quantum confinement effects,the timescale and mechanism of cooling are not well understood.A mismatch between electronic energy gaps and phonon frequencies has led to the hypothesis of a phonon bottleneck and extremely slow cooling,while enhanced electron-hole interactions have suggested ultrafast cooling.Experimental measurements of the cooling timescale range six orders of magnitude.Here,we develop an atomistic approach to describe phonon-mediated exciton dynamics and simulate cooling in NCs of experimentally relevant sizes.We find that cooling occurs on~30 fs timescales in CdSe NCs,in agreement with the most recent measurements,and that the phonon bottleneck is circumvented through a cascade of multiphonon-mediated relaxation events.Furthermore,we identify NC handles for tuning the cooling timescale.
出处 《npj Computational Materials》 SCIE EI CSCD 2023年第1期845-852,共8页 计算材料学(英文)
基金 E.R.acknowledges support from the U.S.Department of Energy,Office of Science,Office of Advanced Scientific Computing Research,Scientific Discovery through Advanced Computing(SciDAC)program under Award No.DE-SC0022088 Methods used in this work were provided by the Center for Computational Study of Excited State Phenomena in Energy Materials(C2SEPEM),which is funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences,Materials Sciences and Engineering Division,via Contract No.DE-AC02-05CH11231 as part of the Computational Materials Sciences Program.D.J.acknowledges the support of the Computational Science Graduate Fellowship from the U.S.Department of Energy under Grant No.DE-SC0019323.
  • 相关文献

二级参考文献95

  • 1A. G. Redfield, The theory of relaxation processes, Adv. Magn. Reson. 1, 1 (1965).
  • 2G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48(2), 119 (1976).
  • 3H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, New York: Oxford University Press, 2002.
  • 4J. Cao, A phase-space study of Bloch-Redfield theory, J. Chem. Phys. 107(8), 3204 (1997).
  • 5S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards engineered energy flows in artificial materials, Phys. Rev. Lett. 89(18), 186802 (2002).
  • 6D. Kim, S. Okahara, M. Nakayama, and Y. Shim, Experimental verification of Forster energy transfer between semiconductor quantum dots, Phys. Rev. B 78(15), 153301(2008).
  • 7S. I. E. Vulto, M. A. de Baat, R. J. W. Louwe, H. P. Per-mentier, T. Neef, M. Miller, H. van Amerongen, and T. J. Aartsma, Exciton simulations of optical spectra of the FMO complex from the green sulfur bacterium Chlorobium, tepidum at 6 K, J. Phys. Chem. B 102(47), 9577 (1998).
  • 8T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, Two-dimensional spectroscopy of electronic couplings in photosynthesis, Nature 434(7033), 625 (2005).
  • 9G. S. Engel, T. R. Calhoun, E. L. Read, T. Ahn, T. Man-cal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, Nature 446(7137), 782(2007).
  • 10J. Wu, F. Liu, Y. Shen, J. Cao, and R. J. Silbey, Efficient energy transfer in light-harvesting systems (I): optimal temperature, reorganization energy and spatial—temporal correlations, New J. Phys. 12(10), 105012 (2010).

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部