期刊文献+

Machine-learning driven global optimization of surface adsorbate geometries 被引量:2

原文传递
导出
摘要 The adsorption energies of molecular adsorbates on catalyst surfaces are key descriptors in computational catalysis research.For the relatively large reaction intermediates frequently encountered,e.g.,in syngas conversion,a multitude of possible binding motifs leads to complex potential energy surfaces(PES),however.This implies that finding the optimal structure is a difficult global optimization problem,which leads to significant uncertainty about the stability of many intermediates.To tackle this issue,we present a global optimization protocol for surface adsorbate geometries which trains a surrogate machine learning potential on-the-fly.The approach is applicable to arbitrary surface models and adsorbates and minimizes both human intervention and the number of required DFT calculations by iteratively updating the training set with configurations explored by the algorithm.We demonstrate the efficiency of this approach for a diverse set of adsorbates on the Rh(111)and(211)surfaces.
出处 《npj Computational Materials》 SCIE EI CSCD 2023年第1期1196-1203,共8页 计算材料学(英文)
  • 相关文献

参考文献5

二级参考文献6

共引文献42

同被引文献9

引证文献2

二级引证文献1

  • 1Xin Hong,Qi Yang,Kuangbiao Liao,Jianfeng Pei,Mao Chen,Fanyang Mo,Hua Lu,Wen-Bin Zhang,Haisen Zhou,Jiaxiao Chen,Lebin Su,Shuo-Qing Zhang,Siyuan Liu,Xu Huang,Yi-Zhou Sun,Yuxiang Wang,Zexi Zhang,Zhunzhun Yu,Sanzhong Luo,Xue-Feng Fu,Shu-Li You.AI for organic and polymer synthesis[J].Science China Chemistry,2024,67(8):2461-2496.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部