期刊文献+

Machine learning potentials for metal-organic frameworks using an incremental learning approach 被引量:2

原文传递
导出
摘要 Computational modeling of physical processes in metal-organic frameworks(MOFs)is highly challenging due to the presence of spatial heterogeneities and complex operating conditions which affect their behavior.Density functional theory(DFT)may describe interatomic interactions at the quantum mechanical level,but is computationally too expensive for systems beyond the nanometer and picosecond range.Herein,we propose an incremental learning scheme to construct accurate and data-efficient machine learning potentials for MOFs.The scheme builds on the power of equivariant neural network potentials in combination with parallelized enhanced sampling and on-the-fly training to simultaneously explore and learn the phase space in an iterative manner.With only a few hundred single-point DFT evaluations per material,accurate and transferable potentials are obtained,even for flexible frameworks with multiple structurally different phases.The incremental learning scheme is universally applicable and may pave the way to model framework materials in larger spatiotemporal windows with higher accuracy.
出处 《npj Computational Materials》 SCIE EI CSCD 2023年第1期2147-2154,共8页 计算材料学(英文)
基金 S.V.and M.C.C.wish to thank the Research Foundation-Flanders(FWO)for doctoral fellowships(grant nos.11H6821N and 11D0420N respectively) The resources and services used in this work were provided by VSC(Flemish Supercomputer Center),funded by the Research Foundation-Flanders(FWO)and the Flemish Government。
  • 相关文献

参考文献2

二级参考文献3

共引文献24

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部