期刊文献+

Predicting lattice thermal conductivity via machine learning: a mini review 被引量:1

原文传递
导出
摘要 Over the past few decades,molecular dynamics simulations and first-principles calculations have become two major approaches to predict the lattice thermal conductivity(κ_(L)),which are however limited by insufficient accuracy and high computational cost,respectively.To overcome such inherent disadvantages,machine learning(ML)has been successfully used to accurately predictκL in a high-throughput style.In this review,we give some introductions of recent ML works on the direct and indirect prediction ofκL,where the derivations and applications of data-driven models are discussed in details.A brief summary of current works and future perspectives are given in the end.
出处 《npj Computational Materials》 SCIE EI CSCD 2023年第1期2322-2332,共11页 计算材料学(英文)
基金 We thank financial support from the National Natural Science Foundation of China(Grant No.62074114).
  • 相关文献

参考文献7

二级参考文献3

共引文献43

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部