摘要
经济的发展促进全国各地的人口流动,增加了城市管理的难度,容易导致社会治安、城市交通拥堵等问题,传统的公安人脸识别系统在容量、精确度等处理方面存在计算效率低下的问题。在此种情况下,文章采用最新的人工智能技术中的卷积神经网络算法,对现有的人脸识别系统进行分析与改进。算法采用TensorFlow计算框架进行分布式数据处理,收集检测的视频与图片并进行标注,建立完整的待检库,构建深度学习识别模型进行训练,有效辨别嫌疑人的身份,为公安刑侦、社会治安等工作提供良好的信息技术服务。
Economic development promotes population flow across the country,which increases the difficulty of urban management,and easily leads to social security,urban traffic congestion and other problems.The traditional public security face recognition system has low computational efficiency in terms of capacity and accuracy.In this case,the convolutional neural network algorithm in the latest artificial intelligence-related technology is adopted in this paper.The face recognition management system is analyzed and improved.The algorithm uses TensorFlow for distributed data processing.By collecting and marking the detected videos and pictures,a complete database to be checked is established,and a deep learning recognition model is constructed for training,so as to effectively identify the identity of suspects and provide good information technology services for public security criminal investigation and social security.
作者
吴锋
张继超
WU Feng;ZHANG Jichao(Nantong Chengyou Information Technology Co.,LtD.,Nantong Jiangsu 226006,China)
出处
《信息与电脑》
2023年第21期131-133,共3页
Information & Computer
关键词
城市管理
人工智能
卷积神经网络
识别模型
urban management
artificial intelligence
convolutional neural network
identification model