期刊文献+

大数据分析管理系统在新能源汽车事故分析中的应用

Application of big data analysis management system in new energy vehicle accident analysis
下载PDF
导出
摘要 随着新能源汽车的广泛使用,新能源汽车事故数据的分析处理越来越受到人们关注。传统的事故数据分析方式通常需要大量的人力和时间,而且往往只能分析少数的数据变量。数据挖掘技术以其强大的数据分析和挖掘能力,已经在新能源汽车事故数据分析处理中得到广泛应用,以帮助研究人员从事故数据中挖掘出潜在的规律和特征,为事故原因和解决方案的提出提供科学依据。本文设计了一套新能源汽车事故大数据分析管理系统,更加高效、有规律地分析新能源汽车事故数据。 With the widespread use of new energy vehicles,more and more people pay attention to the analysis and processing of new energy vehicle accident data.Traditional accident data analysis methods usually require a lot of manpower and time,and can only analyze a few data variables.With its powerful data analysis and mining ability,data mining technology has been widely used in the analysis and processing of new energy vehicle accident data,to help researchers dig out the potential rules and characteristics from the accident data,and to provide a scientifi c basis for the proposal of accident causes and solutions.This paper designs a set of new energy vehicle accident big data analysis and management system,more effi cient and regular analysis of new energy vehicle accident data.
作者 王娜 李强 Wang Na;Li Qiang
出处 《时代汽车》 2024年第2期192-194,共3页 Auto Time
基金 2022年江西省教育厅科技项目”新能源汽车用户数据及车辆健康数据挖掘及分析方法研究”(项目编号:GJJ2202505)。
关键词 数据挖掘 数据分析 新能源汽车 Data mining Data analysis New energy vehicle
  • 相关文献

参考文献4

二级参考文献38

  • 1Guha S,Rastogi R,Shim K.CURE:An Efficient Clustering Algorithm for Large Databases[C].Seattle:Proceedings of the ACM SIGMOD Conference,1998.73-84.
  • 2Guha S,Rastogi R,Shim K.ROCK:A Robust Clustering Algorithm for Categorical Attributes[C].Sydney:Proceedings of the 15th ICDE,1999.512-521.
  • 3Karypis G,Han E-H,Kumar V.CHAMELEON:A Hierarchical Clustering Algorithm Using Dynamic Modeling[J].IEEE Computer,1999,32(8):68-75.
  • 4Ester M,Kriegel H-P,Sander J,et al.A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C].Portland:Proceedings of the 2nd ACM SIGKDD,1996.226-231.
  • 5Hinneburg A,Keim D.An Efficient Approach to Clustering Large Multimedia Databases with Noise[C].New York:Proceedings of the 4th ACM SIGKDD,1998.58-65.
  • 6Wang W,Yang J,Muntz R.STING:A Statistical Information Grid Approach to Spatial Data Mining[C].Athens:Proceedings of the 23rd Conference on VLDB,1997.186-195.
  • 7Wang W,Yang J,Muntz R R.STING+:An Approach to Active Spatial Data Mining[C].Sydney:Proceedings of the 15th ICDE,1999.116-125.
  • 8Agrawal R,Gehrke J,Gunopulos D,et al.Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications[C].Seattle:Proceedings of the ACM SIGMOD Conference,1998.94-105.
  • 9Sheikholeslami G,Chatterjee S,Zhang A.WaveCluster:A Multireso-lution Clustering Approach for Very Large Spatial Databases[C].New York:Proceedings of the 24th Conference on VLDB,1998.428-439.
  • 10Chris Ding.A Tutorial on Spectral Clustering[C].ICML,2004.

共引文献256

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部