期刊文献+

基于DRCNN的PolSAR图像分类综合实验设计

Design of comprehensive experiment for PolSAR image classification based on DRCNN
下载PDF
导出
摘要 为了让学生更好地了解和掌握深度学习TensorFlow框架和CNN网络,采用基于不同区域的多尺度卷积神经网络(DRCNN)设计了PolSAR图像分类综合设计实验,旨在实现遥感图像的自动化分类和理解。极化合成孔径雷达(polarimetric synthetic aperture radar,PolSAR)图像能够提供更加丰富的极化信息,更好地刻画地物特征,对国防建设和国家发展具有重要意义。实验利用Python语言,在CNN基础上进行改进研究,设计了多区域的多尺度CNN模型,实现了极化SAR图像的数据处理、特征学习和分类一体化设计。该实验不仅可以帮助学生综合应用图像处理与深度学习知识,理解和利用CNN来进行极化SAR图像分类的基本原理和方法,还能使学生更加深入、熟练地掌握TensorFlow框架,提高学生的科研素质和动手实践能力。 In order to enable students to have a deeper understanding and mastery of the TensorFlow framework and CNN network for deep learning,a comprehensive design experiment for polarimetric SAR image classification is designed using multi-scale convolutional neural networks(DRCNN)based on different regions,aiming to achieve automated classification and understanding of remote sensing images.Polarimetric synthetic aperture radar(PolSAR)images can provide richer polarization information and better characterize ground features,which is of great significance for national defense construction and national development.The experiment utilized Python language to conduct improvement research on the basis of CNN,designed a multi-scale CNN model with multiple regions,and achieved the integrated design of data processing,feature learning,and classification for PolSAR images.This experiment not only helps students comprehensively apply image processing and deep learning knowledge,understand and utilize the basic principles and methods of CNN for PolSAR image classification,but also enables students to more deeply and proficiently master the TensorFlow framework,improve their scientific research quality and hands-on practical ability.
作者 石俊飞 姬珊珊 金海燕 聂萌萌 王伟 SHI Junfei;JI Shanshan;JIN Haiyan;NIE Mengmeng;WANG Wei(Shaanxi Key Laboratory of Network Computing and Security Technology,Department of Computer Science and Technology,Xi’an University of Technology,Xi’an 710048,China)
出处 《实验技术与管理》 CAS 北大核心 2023年第12期74-81,130,共9页 Experimental Technology and Management
基金 国家自然科学基金青年科学基金项目(62006186) 国家自然科学基金面上项目(62272383) 校级教改项目(xjy2347,310-252042110)。
关键词 综合实验 极化合成孔径雷达图像分类 TensorFlow框架 多尺度卷积神经网络 comprehensive experiment polarimetric SAR image classification TensorFlow framework multi-scale convolutional neural network
  • 相关文献

参考文献4

二级参考文献47

  • 1张微,林健,陈玲,杨金中.基于极化分解的极化SAR数据地质信息提取方法研究[J].遥感信息,2014,29(1):10-14. 被引量:6
  • 2Wang W G, Lu F, Sun Z W, et al. A novel unsupervised classi- fier ofpolarimetrie SAR Images[J]. Proeedia Engineering, 201 !, 15 : 1595-1599.
  • 3Lee J S,Pottier E. Polarimetric Radar Imaging: From Basics to Applications[ M]. Boca Raton: CRC Press, 2009.
  • 4FreitasC DC, Soler L D S, Sant'Anna S J S, et al. Land use and land cover mapping in the Brazilian Amazon using polarime- tric airborne P-band SAR data[ J]. IEEE Transactions on Geo- science and Remote Sensing, 2008, 46 (I0): 2956-2970.
  • 5Formont P, Pascal F, Vasile J P, et al. Statistical classification for heterogeneous polarimetric SAR images[ J ]. IEEE journal of Selected Topics in Signal Processing, 2011, 5 ( 3 ) : 567-576.
  • 6lnce T. Unsupervised classification of polarimetric SAR image with dynamic clustering: an image processing approach [ J ]. Ad- vances in Engineering Software, 2010, 41 (4) : 636-646.
  • 7Lee .J S,Hoppel K W, Mango S A, et al. Intensity and phase sta- tistics of multilook polarimetric and interferometric SAR imagery [ J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5) : 1017-1028.
  • 8Xu F, Jin Y Q. Deorientation theory, of polarimetric scattering targets and application to terrain surface classification[ J]. IEEE Transactions on Geoseienee and Remote Sensing, 2005, 43 (10) : 2351-2364.
  • 9VanZyl J J. Unsupervised classification of scattering behavior u- sing radar polarimetry data[ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27( 1 ) : 36-45.
  • 10Hinton G E,Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7) : 1527- 1554.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部