期刊文献+

互质阵MIMO雷达DOA估计性能综合分析

Comprehensive Analysis of DOA Estimation Performance of Coprime Array MIMO Radar
下载PDF
导出
摘要 以非相干信号源为研究对象,综合分析了单基地互质阵多输入多输出(MIMO)雷达的波达方向(DOA)估计性能。首先,在总结归纳互质阵结构特点的基础上推导了基于和联合阵列及和差联合阵列的单基地MIMO雷达测向信号模型,然后结合多重信号分类(MUSIC)算法,分别详细介绍了基于和联合阵列及和差联合阵列的单基地MIMO雷达DOA估计方法,最后,进行与等阵元数的均匀线阵MIMO雷达的对比仿真实验,验证了互质阵MIMO雷达DOA估计性能的优越性。 Taking the incoherent signal source as the research object,this paper comprehensively analyzes the performance of Direction of Arrival(DOA)estimation of the monostatic coprime array MIMO radar.Firstly,the direction finding signal model of monostatic MIMO radar based on sum coarray and sumdifference coarray is derived on the basis of summarizing the structural characteristics of the coprime array.Then,by using the Multiple Signal Classification(MUSIC)algorithm,the DOA estimation methods of monostatic MIMO radar based on sum coarray and sum-difference coarray are introduced in detail respectively.Finally,through simulation experiments,a comparison with the uniform linear array MIMO radar with the same number of elements is conducted,which verifies the superiority of the DOA estimation performance of the coprime array MIMO radar.
作者 杨清亮 王鸿帧 张宇乐 陈晨 YANG Qingliang;WANG Hongzhen;ZHANG Yule;CHEN Chen(No.93575 Unit of PLA,Chengde 067000,China;Air Force Engineering University,Xi’an 710000,China;No.95980 Unit of PLA,Xiangyang 441000,China)
出处 《电光与控制》 CSCD 北大核心 2024年第1期97-103,共7页 Electronics Optics & Control
关键词 互质阵列 多输入多输出雷达 波达方向估计 和联合阵列 和差联合阵列 coprime array MIMO radar DOA estimation sum coarray sum-difference coarray
  • 相关文献

参考文献9

二级参考文献58

  • 1Li J, Stoica P, Xu L Z, et al. On parameter identifiability of MIMO radar[J]. IEEE Signal Processing Letters, 2007, 14(12) : 968 - 971.
  • 2Robey F C, Coutts S, Weikle D D, et al. MIMO radar theory and experimental results[C]// Proceedings of 38^th Asilornar Conference on Signals, Systems and Computers, California IEEE, 2004, 1(7):300 - 304.
  • 3Xu L Z, Li J, Stoica P. Adaptive techniques for MIMO radar[C]// IEEE Int. Conf. Radar, Shanghai: IEEE, 2006:258-262.
  • 4Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution[C]// Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, California : IEEE, 2003, 1(9) : 54 - 59.
  • 5Zeng J K, He Z S, Liu B. Adaptive space-time-waveform processing for MIMO radar[C]//International Conference on Comunications , Circuits and Systems, Japan: IEEE, 2007: 641- 643.
  • 6Ilya Bekkermanm, Joseph Tabrikian. Target detection and localization using MIMO radars and sonars[J].IEEE Trans. on Signal Processing, 2006, 54(10):3873 - 3883.
  • 7Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound[J].IEEE Trans. on ASSP, 1989,37 (5) : 720 - 741.
  • 8Stoiea P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound: further results and comparisons[J]. IEEE Trans. onASSP, 1990, 38 (12):2140-2150.
  • 9Huleihel W, Tabrikian J, Shavit R, et al. Optimal adaptive waveform design for cognitive MIMO radar[J]. IEEE Trans. on Signal Processing, 2013, 61(20) : 5075 - 5089.
  • 10Babur G, Krasnov O, Yarovoy A, et al. Nearly orthogonal waveforms for MIMO FMCW radar[J]. IEEE Trans. on Aero- space and Electronic Systems, 2013, 49(3) :1426 - 1437.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部