摘要
提出一种关于求解分数阶CEV模型下未定权益的紧致差分法.在时间上采用Caputo导数进行离散,在空间上采用4阶紧致差分格式进行离散.针对未定权益,得到一个时间2-α阶,空间4阶精度的紧致差分格式.并且运用傅里叶分析法和数学归纳法验证该方法的稳定性和收敛性.最后,通过数值实验验证该方法的有效性.
A compact difference scheme for solving contingent claim in fractional CEV models was proposed.In time,Caputo derivative was used for discretization,and in space,fourth order compact difference scheme was used for discretization.A compact difference scheme with time order 2-αand space order 4 precision was obtained for European contingent claim.Fourier analysis and mathematical induction were used to verify the stability and convergence of the proposed method.Finally,the effectiveness of the proposed method was verified by numerical experiments.
作者
胡青
喻喜沩
孙玉东
HU Qing;YU Xiwei;SUN Yudong(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China;School of Politics and Economics Management,Guizhou Minzu University,Guiyang 550025,China)
出处
《哈尔滨商业大学学报(自然科学版)》
CAS
2024年第1期110-117,共8页
Journal of Harbin University of Commerce:Natural Sciences Edition