期刊文献+

机器学习在化合物属性预测中的应用

Applications of machine learning on compound property prediction
下载PDF
导出
摘要 化合物的属性预测是药物研发、毒理学研究、环境行为预测等工作的核心任务.目前,人工合成的化学物质层出不穷,相关的实验研究数据在持续扩充,但实验研究数据远无法赶超新型化学物质的研发速度.近年来,机器学习算法及模型在化合物属性预测方面展现了独特的优势和巨大的潜力,尤其在实验数据匮乏的情况下,提供了可靠的模型预测数据.本文介绍了机器学习应用于化合物属性预测的主要流程步骤和相应的模块的内容,涵盖数据集、分子描述方法、模型性能评估指标和评估方法等.同时,本文系统总结了机器学习方法在化合物物理化学性质预测、生物活性预测和毒性预测方面的应用实例,并从数据集、分子特征化、模型解释等方面分析并讨论了相关研究工作现存问题与未来挑战. Compounds property prediction is an essential task in drug development,toxicology,and environmental behavior prediction.Along with an increasing number of synthetic chemicals,the corresponding experimental research data are expanding.However,the experimental data are still far away from rapid invention of novel chemicals.In recent years,machine learning algorithms and models have shown advantages and great potential in compound property prediction,especially in case of lacking experimental data,providing reliable model-predicted data.Our study outlines the main procedures and corresponding modules related to applications of machine learning tools for compound property prediction,specifically including datasets,molecular description methods,model performance evaluation metrics,and methods.Furthermore,this work systematically summarizes progress and advances in compound property prediction based on machine learning approaches,and also introduces specific examples on compounds predictions of physical and chemical properties,bioactivity,and toxicity.To end,the existing problems and challenges are discussed based on data sets,molecular characterization,and model outcome interpretation.
作者 王紫维 韩民 金彪 WANG Ziwei;HAN Min;JIN Biao(State Key Laboratory of Organic Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou,510640,China;CAS Center for Excellence in Deep Earth Science,Guangzhou,510640,China;University of Chinese Academy of Sciences,Beijing,100049,China)
出处 《环境化学》 CAS CSCD 北大核心 2024年第1期69-81,共13页 Environmental Chemistry
基金 国家重点研发计划重点专项(2019YFC1805500,2019YFC1805503)资助。
关键词 机器学习 化合物属性 分子结构 模型预测 machine learning compound property molecular structure model prediction
  • 相关文献

参考文献5

二级参考文献64

  • 1CUI ShiHai1,2, YANG Jing1, LIU ShuShen2,3 & WANG LianSheng2 1 College of Chemistry and Environment, Nanjing Normal University, Nanjing 210097, China,2 State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210093, China,3 Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.Predicting bioconcentration factor values of organic pollutants based on medv descriptors derived QSARs[J].Science China Chemistry,2007,50(5):587-592. 被引量:7
  • 2林舒杨,李翠华,江弋,林琛,邹权.不平衡数据的降采样方法研究[J].计算机研究与发展,2011,48(S3):47-53. 被引量:31
  • 3蒋盛益,谢照青,余雯.基于代价敏感的朴素贝叶斯不平衡数据分类研究[J].计算机研究与发展,2011,48(S1):387-390. 被引量:21
  • 4Johnson MA and Maggiora GM. Concepts and Applications of Molecular Similarity. New York :John Wiley, 1990.
  • 5Wermuth CG. Similarity in drugs: reflections on analogue design. Drug Discov Today, 2006, 11:348 -354.
  • 6Eckert H and Bajorath J. Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discoy Today, 2007,12:225 - 33.
  • 7Willett P. Similarity-based virtual screening using 2D fingerprints. Drug Discov Today, 2006,11 : 1046 - 53.
  • 8Dean PM. Molecular similarity in drug design. Dordrecht: Kluwer academic pulishers, 1994. London & New York: Blackie Academic & Professional, 1995.
  • 9Carbo-Dorca R. Molecular Similarity and Reactivity : From Quantum Chemical to Phenomenological Approaches Understanding Chemical Reactivity. Amsterdam: Kluwer Academic Publishers, 1995.
  • 10Sen K. Molecular Similarity Ⅰ. Book Series Topics in Current Chemistry, 1995.

共引文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部