期刊文献+

拟常曲率黎曼流形中的2-调和子流形

Biharmonic Submanifolds in Riemannian Manifold of Quasi-constant Curvature
下载PDF
导出
摘要 该文讨论了拟常曲率黎曼流形Nn+p中具有平行平均曲率的2-调和子流形Mn,在ξ∈Γ(TM)时,得到这类子流形是极小子流形的一个拼挤定理.对2-调和超曲面的情形,也得到了其为极小超曲面的一个充分条件. Let Nn+p be an(n+p)-dimensional Riemannian manifold of quasi-constant curvature,and Mnis an n-dimensional biharmonic submanifold with the parallel mean curvature of Nn+p.whenξis tangent to Mn,we obtain a Pinching theorem that the biharmonic submanifold is minimal submanifold.Then,we also get a sufficient condition that the biharmonic hypersurface is minimal hypersurface.
作者 李明图 裴瑞昌 LI Mingtu;PEI Ruichang(College of Mathematics and Statistics,Tianshui Normal University,Tianshui 741000,China)
出处 《通化师范学院学报》 2024年第2期36-39,共4页 Journal of Tonghua Normal University
基金 国家自然科学基金项目(11661070)。
关键词 拟常曲率 2-调和 极小 平行平均曲率 quasi-constant curvature biharmonic minmal the parallel mean curvature
  • 相关文献

参考文献3

二级参考文献14

  • 1SHEN YIBIING,DONG YUXING.ON COMPLETE SPACE-LIKE SUBMANIFOLDS WITH PARALLEL MEAN CURVATURE VECTOR[J].Chinese Annals of Mathematics,Series B,1998,19(3):369-380. 被引量:10
  • 2EELLS J, LEMAIRE L. Selected topic in harmonic maps [A]. CBMS Regional Conference Series in Mathematics 50 [C]. Providence: American Mathematical Society, 1983.
  • 3姜国英.Riemann流形间2—调和的等距浸入[J].数学年刊:A辑,1986,7(2):130-144.
  • 4FONTENELE F. Submanifold with parallel mean curvature Vector in pinched Riemannian manifolds[J]. Paci J of Math, 1997,177(1):47-70.
  • 5LI A M, LI J M. An intrinsic rigidity theorem for minimal Submanifolds in a sphere [J]. Arch Math,1992,58(3):582-594.
  • 6GOLDBERG R. Curvature and Homology[M]. New York: Academic Press, 1962.
  • 7XU H W. On closed minimal submanifolds in pinched Riemannian manifolds [J]. Tran Amer Math Soc,1995, 345(4):1743-1751.
  • 8SANTOS W. Submanifolds with parallel mean curvature vector in spheres [J]. Tohoku Math J, 1994,46(1):121-133.
  • 9OMORI H. Isometric immersions of Riemannian manifolds[J]. J Math Soc Japan, 1967,19(2): 205- 214.
  • 10Bai Zhenguo. Minimal submanifolds in a Riemannian manifold of quasi constant curvature. Chin Ann of Math, 1988, 9B(1): 32-37

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部