期刊文献+

基于免疫神经网络的综合交通枢纽布局优化方法——以洛阳市城市轨道交通1号线为例 被引量:1

Optimization Method of Comprehensive Transportation Hub Layout Based onImmune Neural Network: Taking Luoyang Urban Rail Transit Line 1 as an Example
下载PDF
导出
摘要 为了提高综合交通枢纽布局的科学性,促进区域经济的建设与交通产业的良性发展,基于免疫神经网络算法,研究设计了一种综合交通枢纽布局优化方法。提取综合交通枢纽布局优化的关键因素,设置约束条件,应用BP神经网络算法,建立综合交通枢纽布局优化模型,引入免疫克隆算法,求得综合交通枢纽布局优化模型的最优解算结果。检测结果显示,对于随机的10组综合交通枢纽规划的历史数据,该方法得到优化结果的执行时间均值为0.56 s,具有实时性与高效性;布局优化结果误差绝对值的均值为0.043,最大误差的绝对值为0.074,均控制在实际工程所需误差±0.1的范围之内,具有精确性与可行性。 In order to improve the scientificity of the comprehensive transportation hub layout and promote the construction of regional economy and the benign development of the transportation industry,an optimization method of the comprehensive transportation hub layout was studied and designed based on the immune neural network algorithm.The key factors of the comprehensive transportation hub layout optimization was extracted,constraints were set,BP neural network algorithm was applied,the comprehensive transportation hub layout optimization model was established,and immune clone algorithm was introduced to obtain the optimal solution results of the comprehensive transportation hub layout optimization model.The test results show that the average execution time of the optimization results obtained by this method is 0.56s for 10 random groups of historical data of comprehensive transportation hub planning,which is real-time and efficient.The mean value of the absolute value of the error of the layout optimization results is 0.043,and the absolute value of the maximum error is 0.074,both of which are controlled within the range of±0.1 required by the actual project,which is accurate and feasible.
作者 钟佩伶 高波 ZHONG Peiling;GAO Bo(China Design Group Co.,Ltd,Nanjing 210000,China)
出处 《科技和产业》 2024年第2期268-272,共5页 Science Technology and Industry
基金 河南省发展和改革委员会文件-洛阳市城市轨道交通1号线工程设计LYGD-SJ-03标段(土建单项设计)豫发改设计〔2017〕1093号。
关键词 免疫神经网络算法 综合交通枢纽 布局优化 immune neural network algorithm comprehensive transportation hub layout optimization
  • 相关文献

参考文献9

二级参考文献48

共引文献14

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部