期刊文献+

基于深度学习的遥感目标检测技术 被引量:4

Remote sensing object detection based on deep learning
下载PDF
导出
摘要 针对遥感目标检测精度不足,提出一种改进YOLOv5s遥感目标检测算法。主干网络采用CSP-D模块进行特征提取,充分利用深层和浅层特征进行特征增强;颈部网络采用BiFPN结构进行特征融合,提高多尺度特征信息融合效率。实验结果表明,针对遥感目标数据集DIOR,改进YOLOv5s网络平均准确率均值(mAP)提升2.1%,不同目标类别平均准确率(AP)均有提升,缓解原网络检测存在的漏检误检问题,改进网络检测速度仍能满足实时性要求,具有更优的检测性能。 Aiming at the lack of detection accuracy about remote sensing target detection,an improved YOLOv5s remote sensing target detection algorithm was proposed to improve the detection accuracy of remote sensing targets.CSP-D module was used for feature extraction in backbone network,and the feature information of the shallow and deep layers of the network was fully utilized for feature enhancement.The neck network used BiFPN structure for feature fusion to improve the efficiency of multi-scale feature information fusion.Experimental results show that for the remote sensing target dataset DIOR,compared with the original network,the mean average precision(mAP)is increased by 2.1%through the improved YOLOv5s network.The average precision(AP)of different object detection classes is improved.The problems of missed detection and false detection exist in the original network detection are alleviated.The improved network detection speed can still meet the real-time requirements and shows better detection performance.
作者 章程军 胡晓兵 魏上云 郭爽 ZHANG Cheng-jun;HU Xiao-bing;WEI Shang-yun;GUO Shuang(School of Mechanical Engineering,Sichuan University,Chengdu 610065,China;Yibin Institute of Industrial Technology,Sichuan University,Yibin 644000,China)
出处 《计算机工程与设计》 北大核心 2024年第2期594-600,共7页 Computer Engineering and Design
关键词 遥感图像 目标检测 YOLOv5s 特征增强 多尺度特征融合 深度学习 单阶段网络 remote sensing image object detection YOLOv5s feature enhancement multi-scale feature fusion deep learning one stage pipeline
  • 相关文献

参考文献1

二级参考文献15

共引文献34

同被引文献18

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部