摘要
针对声发射输气管道不同泄漏信号难以判别的问题,提出了一种基于多尺度一维卷积自编码器的输气管道泄漏判别方法。利用多尺度一维卷积自编码器对信号特征进行无监督学习训练,提取数据特征信息,通过多尺度的卷积层和池化层对数据特征信息进行学习,最后,输出管道泄漏判别结果。实验结果表明:该自编码器能够精确判断不同类型的管道泄漏,准确率达到97.13%。通过与其他自编码器进行对比验证了该自编码器在泄漏判别方面的准确性。
Aiming at the problem that it is difficult to distinguish different leakage signals of acoustic emission gas transmission pipeline,a multi-scale one-dimensional convolution adaptive encoder for gas transmission pipeline leakage identification was proposed.Multi-scale one-dimensional convolution adaptive encoder were used to conduct unsupervised learning training on signal features,extract data feature information,and learn data feature information through multi-scale convolution layer and pooling layer.Finally,the results of pipeline leakage discrimination were output.Experimental results show that the adaptive encoder can accurately judge different types of pipeline leakage with an accuracy of 97.13%.The accuracy of this adaptive encoder in leakage distinguish is verified by comparing with other adaptive encoder.
作者
田佳慧
郎宪明
隋东冶
TIAN Jiahui;LANG Xianming;SUI Dongye(School of Information and Control Engineering,Liaoning Petrochemical University)
出处
《管道技术与设备》
CAS
2024年第1期1-5,共5页
Pipeline Technique and Equipment
基金
国家自然科学基金项目(61673199,62073158)
中国博士后科学基金资助项目(2020M660125)
辽宁省博士科研启动基金计划项目(2019-BS-158)
辽宁省教育厅项目(L2020017)
辽宁石油化工大学引进人才科研启动基金资助(2019XHHL-008)
大学生创新创业训练计划项目(202210148019)。
关键词
输气管道
声发射
泄漏判别
卷积自编码器
gas pipeline
acoustic emission
leakage distinguish
convolution adaptive encoder