期刊文献+

油田环保安全领域标准数据关联性监测技术研究

Research on Correlation Monitoring of Standard Data in Oilfield Environmental Safety Field
下载PDF
导出
摘要 本论文开展油田环保安全标准关联性监测技术研究,针对油田环保安全标准相关国内外动态信息(如:标准动态、政策法规、智库报告、情报产品、热点栏目)进行油田环保安全标准领域自动化关联性监测,遵循“油田环保安全领域标准数据需求识别、油田环保安全领域标准数据源的确定依据、油田环保安全领域标准关联数据自动抓取、油田环保安全领域标准关联监测内容分析”的研究思路,利用大数据分析与知识关联技术,实现对所需监测数据基本内容的自动化统计与分析,动态可视化地展示或分析所需监测数据的内容,及时跟踪与推送油田环保安全标准前沿与热点内容,支持用户便捷了解油田环保安全标准领域最新发展动态,为开展油田环保安全领域标准知识库建设提供多元数据支撑。 This paper carries out research on the correlation monitoring technology of oilfield environmental safety standards,and conducts automatic correlation monitoring of domestic and foreign dynamic information related to oilfield environmental safety standards such as standard dynamics,policies and regulations,think tank reports,intelligence products,and hot columns.The research ideas are to identify data requirements of oilfield environmental protection safety standards,determinate standard data sources,automatically capture associated data and make an analysis of associated monitoring content.The paper uses big data analysis and knowledge correlation technology to realize automatic statistics and analysis of the basic content of the required monitoring data,dynamically and visually display or analyze the monitoring data,timely track and publish the forefront and hot content of oilfield environmental safety standards,help users to easily understand the latest development in the field of oilfield environmental safety standards,and provide multivariate data support for the construction of the oilfield environmental safety standard knowledge base.
作者 王凯月 黄珊 王逸飞 孙红军 苏雪松 延伟 WANG Kai-yue;HUANG Shan;WANG Yi-fei;SUN Hong-jun;SU Xue-song;YAN Wei(Technology Testing Center of Shengli Oilfield Branch,China Petrochemical Co.,Ltd.;China National Institute of Standardization;Shengli Oilfield Testing and Evaluation Research Co.,Ltd.)
出处 《标准科学》 2024年第2期47-52,共6页 Standard Science
关键词 油田环保安全 标准数据 关联性监测 机器学习 oilfield environmental protection safety standard data correlation monitoring machine learning
  • 相关文献

参考文献2

二级参考文献13

  • 1苗长芬 ,冯伟华 .面向主题Crawler的设计与实现[J].平原大学学报,2005,22(3):110-112. 被引量:1
  • 2Larkey L S,Croft W B.Combining classifiers in text categorization[C].Switzerland:Proceedings of SIGIR-96,19th ACM International Conference on Research and Development in Information Retrieval, 1996:289-297.
  • 3Schapire R E,Singer Y.BoosTexter: A boosting-based system for text categorization[J].Machine Learning,2000,39(2/3): 135-168.
  • 4Tan Songbo,Chen Xueqi,Moustafa M Ghanem,et al.A novel refinement approach for text categorization[C].Proc of the 14th ACM International Conference on Information and Knowledge Management,2005:469-476.
  • 5Naftali Tishby, Femando C Pereira,William Bialek.The information bottleneck method[J].In Proc of the 37th Allerton Conference on Communication and Computation, 1999.
  • 6Kjersti Aas,Line Eikvil.Text categorisation[R].A survey, Norwegian Computing Center, 1999.
  • 7Sebastiani F.A tutorial on automated text categorisation[J].Proceedings of ASAI-99,1 st Argentinian Symposium on Artificial Intelligence, 1999:7-35.
  • 8Schapire R E,Singer Y, Singhal A.Boosting and rocchio applied to text filtering[C].Proceedings of SIGIR-98,21 st ACM International Conference on Research and Development in Information Retrieval, 1998:215-223.
  • 9Joachims T. A probabilistic, analysis of the rocchio algorithm with TFIDF for trxt categorization [C]. Int Conf Machine Learning, 1997.
  • 10李晓明,闫宏飞,王继民.搜索引擎-原理、技术与系统[M].北京:科学出版社,2004:1-5.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部