摘要
本论文开展油田环保安全标准关联性监测技术研究,针对油田环保安全标准相关国内外动态信息(如:标准动态、政策法规、智库报告、情报产品、热点栏目)进行油田环保安全标准领域自动化关联性监测,遵循“油田环保安全领域标准数据需求识别、油田环保安全领域标准数据源的确定依据、油田环保安全领域标准关联数据自动抓取、油田环保安全领域标准关联监测内容分析”的研究思路,利用大数据分析与知识关联技术,实现对所需监测数据基本内容的自动化统计与分析,动态可视化地展示或分析所需监测数据的内容,及时跟踪与推送油田环保安全标准前沿与热点内容,支持用户便捷了解油田环保安全标准领域最新发展动态,为开展油田环保安全领域标准知识库建设提供多元数据支撑。
This paper carries out research on the correlation monitoring technology of oilfield environmental safety standards,and conducts automatic correlation monitoring of domestic and foreign dynamic information related to oilfield environmental safety standards such as standard dynamics,policies and regulations,think tank reports,intelligence products,and hot columns.The research ideas are to identify data requirements of oilfield environmental protection safety standards,determinate standard data sources,automatically capture associated data and make an analysis of associated monitoring content.The paper uses big data analysis and knowledge correlation technology to realize automatic statistics and analysis of the basic content of the required monitoring data,dynamically and visually display or analyze the monitoring data,timely track and publish the forefront and hot content of oilfield environmental safety standards,help users to easily understand the latest development in the field of oilfield environmental safety standards,and provide multivariate data support for the construction of the oilfield environmental safety standard knowledge base.
作者
王凯月
黄珊
王逸飞
孙红军
苏雪松
延伟
WANG Kai-yue;HUANG Shan;WANG Yi-fei;SUN Hong-jun;SU Xue-song;YAN Wei(Technology Testing Center of Shengli Oilfield Branch,China Petrochemical Co.,Ltd.;China National Institute of Standardization;Shengli Oilfield Testing and Evaluation Research Co.,Ltd.)
出处
《标准科学》
2024年第2期47-52,共6页
Standard Science
关键词
油田环保安全
标准数据
关联性监测
机器学习
oilfield environmental protection safety
standard data
correlation monitoring
machine learning