期刊文献+

基于语音识别的多模态人机交互系统关键技术研究 被引量:3

Research on key technologies of multimodal human-computer interaction system based on speech recognition
原文传递
导出
摘要 为了降低多模态人机交互系统在语音识别中的误差,研究提出了一种基于一维向量卷积神经网络(1-Dimensional Convolution Neural Network,1DCNN)的英语语音识别技术,并提出语音去噪方法,以此构建多模态人机交互系统。在1DCNN算法的性能分析中显示,研究采用的1DCNN算法损失值较小,且在训练中的误差值在0.005以内。此外在多模态人机交互系统的测试中显示,系统能够有效处理噪声信号,并且在不同情绪语音鉴别中的准确率较高,同时针对混合英语语音的鉴别准确率也在90%以上。以上结果表明,采用1DCNN算法能够有效提升多模态人机交互系统的语音识别和处理能力,为多模态人机交互的普及提供了设计方向,并为交互技术的未来发展提供理论支持。 In order to reduce the error of multimodal human-computer interaction system in speech recognition,an English speech recognition technology based on 1DCNN is proposed,and a speech denoising method is proposed to build multimodal human-computer interaction system.The performance analysis of 1DCNN algorithm shows that the loss value of 1DCNN algorithm used in the study is small,and the error value in training is within 0.005.In addition,the test of multimodal human-computer interaction system shows that the system can effectively process noise signals,and has a high accuracy rate in speech recognition of different emotions.At the same time,the accuracy rate for mixed English speech recognition is also above 90%.The above results show that the 1DCNN algorithm can effectively improve the speech recognition and processing ability of multimodal human-computer interaction system,and provide a design direction for the popularization of multimodal human-computer interaction,without providing theoretical support for the future development of interaction technology.
作者 姚鑫 YAO Xin(Xianyang Vocational&Technical College,Xianyang Shaanxi 712000,China)
出处 《自动化与仪器仪表》 2023年第11期222-225,共4页 Automation & Instrumentation
基金 教育部科技发展中心2022年虚拟仿真技术在职业教育教学中的创新应用专项课题《基于虚拟仿真技术的学前教育专业群实践教学体系研究》(ZJXF2022273) 陕西省教育科学“十四五”规划2023年度课题《教育数字化背景下职业院校新形态教材开发的研究与实践——以学前教育专业为例》(SGH23Y3110) 陕西省社科联职业教育理论与实践课题《“双高计划”视域下学前教育专业群新形态教材建设探索与实践》(2023HZ1426)。
关键词 多模态 人机交互 1DCNN 语音识别 英语 multimodal human-computer interaction 1DCNN:speech recognition:English
  • 相关文献

参考文献14

二级参考文献90

共引文献80

同被引文献24

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部