期刊文献+

Des-Arg(9)bradykinin as a causal metabolite for autism spectrum disorder

下载PDF
导出
摘要 BACKGROUND Early diagnosis and therapeutic interventions can greatly enhance the developmental trajectory of children with autism spectrum disorder(ASD).However,the etiology of ASD is not completely understood.The presence of confounding factors from environment and genetics has increased the difficulty of the identification of diagnostic biomarkers for ASD.AIM To estimate and interpret the causal relationship between ASD and metabolite profile,taking into consideration both genetic and environmental influences.METHODS A two-sample Mendelian randomization(MR)analysis was conducted using summarized data from large-scale genome-wide association studies(GWAS)including a metabolite GWAS dataset covering 453 metabolites from 7824 European and an ASD GWAS dataset comprising 18381 ASD cases and 27969 healthy controls.Metabolites in plasma were set as exposures with ASD as the main outcome.The causal relationships were estimated using the inverse variant weight(IVW)algorithm.We also performed leave-one-out sensitivity tests to validate the robustness of the results.Based on the drafted metabolites,enrichment analysis was conducted to interpret the association via constructing a protein-protein interaction network with multi-scale evidence from databases including Infinome,SwissTargetPrediction,STRING,and Metascape.RESULTS Des-Arg(9)-bradykinin was identified as a causal metabolite that increases the risk of ASD(β=0.262,SE=0.064,P_(IVW)=4.64×10^(-5)).The association was robust,with no significant heterogeneity among instrument variables(P_(MR Egger)=0.663,P_(IVW)=0.906)and no evidence of pleiotropy(P=0.949).Neuroinflammation and the response to stimulus were suggested as potential biological processes mediating the association between Des-Arg(9)bradykinin and ASD.CONCLUSION Through the application of MR,this study provides practical insights into the potential causal association between plasma metabolites and ASD.These findings offer perspectives for the discovery of diagnostic or predictive biomarkers to support clinical practice in treating ASD.
出处 《World Journal of Psychiatry》 SCIE 2024年第1期88-101,共14页 世界精神病学杂志
基金 Supported by The Guangdong Basic and Applied Basic Research Foundation,No.2023A1515011432 The Guangzhou Science and Technology Planning Project,No.2023A04J0627 and National Natural Science Foundation of China,No.82004256.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部