期刊文献+

Cationic engineered nanodiamonds for efficient antibacterial surface with strong wear resistance

原文传递
导出
摘要 The spread of diseases caused by bacterial adhesion and immobilization in public places constitutes a serious threat to public health.Prevention of bacteria spread by the construction of an antibacterial surface takes precedence over post-infection treatment.Herein,we demonstrate an effective antibacterial surface with strong wear resistance by constructing cationic engineered nanodiamonds(C-NDs).The C-NDs with positive surface potentials interact effectively with bacteria through electrostatic interactions,where the C-NDs act on the phospholipid bilayer and lead to bacterial membrane collapse and rupture through hydrogen bonding and residual surface oxygen-containing reactive groups.In this case,bactericidal rate of 99.99%and bacterial biofilm inhibition rate of more than 80%can be achieved with the C-NDs concentration of 1 mg/mL.In addition,the C-NDs show outstanding antibacterial stability,retaining over 87%of the antibacterial effect after stimulation by adverse environments of heat,acid,and external abrasion.Therefore,an antibacterial surface with high wear resistance obtained by integrating C-NDs with commercial plastics has been demonstrated.The antibacterial surface with a mass fraction of 1 wt.%C-NDs improved abrasion resistance by 3981 times,with 99%killing of adherent bacteria.This work provides an effective strategy for highly efficient antibacterial wear-resistant surface,showing great practical applications in public health environments.
出处 《Nano Research》 SCIE EI CSCD 2024年第3期939-948,共10页 纳米研究(英文版)
基金 The authors acknowledge the National Natural Science Foundation of China(Nos.12274378,62075198 and U21A2070) Outstanding Youth Foundation of Henan(No.222300420087)for financial support of this work.
  • 相关文献

参考文献5

二级参考文献14

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部