期刊文献+

Accelerating solar driven CO_(2) reduction via sulfur-doping boosted water dissociation and proton transfer

原文传递
导出
摘要 Exploring efficient photocatalysts for solar driven CO_(2) reduction with water(H_(2)O)as a proton donor is highly imperative but remains a great challenge because the synchronous enhancement of CO_(2) activation,H_(2)O dissociation and proton transfer is hardly achieved on a photocatalyst.Particularly,the sluggish H_(2)O dissociation impedes the photocatalytic CO_(2) reduction reaction involving multiple proton–electron coupling transfer processes.Herein,a sulfur-doped BiOCl(S-BiOCl)photocatalyst with abundant oxygen vacancies(OV)is developed,which exhibits broadband-light harvesting across solar spectrum and distinct photothermal effect due to photochromism.For photocatalytic CO_(2) reduction with H_(2)O in a gas–solid system,the high CO yield of 49.76μmol·g_(cat)^(-1)·h^(-1) with 100%selectivity is achieved over the S-BiOCl catalyst under a simulated sunlight.The H_(2)O-assisted CO_(2) reduction reaction on S-BiOCl catalyst is triggered by photocatalysis and the photothermal heating further enhances the reaction rate.The kinetic isotope experiments indicate that the sluggish H_(2)O dissociation affects the whole photocatalytic CO_(2) reduction process.The presence of oxygen vacancies promotes the adsorption and activation of H_(2)O and CO_(2),and the doped S sites play a crucial role in boosting H_(2)O dissociation and accelerating the dynamic migration of hydrogen species.As a result,the ingenious integration of OV defects,S sites and photothermal effect in S-BiOCl catalyst conjointly contributes to the significant improvement in photocatalytic CO_(2) reduction performance.
出处 《Nano Research》 SCIE EI CSCD 2024年第3期1056-1065,共10页 纳米研究(英文版)
基金 supported by the Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(No.LZY23B030006) the Natural Science Foundation of Zhejiang Province of China(No.LY19B010005) the Fundamental Research Funds of Zhejiang Sci-Tech University(No.2020Y003).
  • 相关文献

参考文献7

二级参考文献24

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部