摘要
Alkaline hydrogen evolution reaction(HER)offers a near-zero-emission approach to advance hydrogen energy.However,the activity limited by the multiple reaction steps involving H_(2)O molecules transfer,absorption,and activation still unqualified the thresholds of economic viability.Herein,we proposed a multisite complementary strategy that incorporates hydrophilic Mo and electrophilic V into Ni-based catalysts to divide the distinct steps on atomically dispersive sites and thus realize sequential regulation of the HER process.The Isotopic labeled in situ Raman spectroscopy describes 4-coordinated hydrogen bonded H_(2)O to be free H_(2)O passing the inner Helmholtz plane in the vicinity of the catalysts under the action of hydrophilic Mo sites.Furthermore,potential-dependent electrochemical impedance spectroscopy(EIS)reveals that electrophilic V sites with abundant 3d empty orbitals could activate the lone-pair electrons in the free H_(2)O molecules to produce more protic hydrogen,and dimerize into H_(2) at the Ni sites.By the sequential management of reactive H_(2)O molecules,NiMoV oxides multisite catalysts surpass Pt/C hydrogen evolution activity(49 mV@10 mA∙cm^(-2) over 140 h).Profoundly,this study provides a tangible model to deepen the comprehension of the catalyst–electrolyte interface and create efficient catalysts for diverse reactions.