期刊文献+

Visible light cross-linking and bioactive peptides loaded integrated hydrogel with sequential release to accelerate wound healing complicated by bacterial infection

原文传递
导出
摘要 The effective management of bacterial infections that are resistant to multiple drugs remains a substantial clinical challenge.The eradication of drug-resistant bacteria and subsequent promotion of angiogenesis are imperative for the regeneration of the infected wounds.Here,a novel and facile peptide containing injectable hydrogel with sustained antibacterial and angiogenic capabilities is developed.The antibacterial peptide that consists of 11 residues(CM11,WKLFKKILKVL)is loaded onto acrylate-modified gelatin through charge interactions.A vascular endothelial growth factor mimetic peptide KLT(KLTWQELYQLKYKGI)with a GCG(Gly-Cys-Gly)modification at the N-terminal is covalently coupled through a visible light-induced thiol-ene reaction.In this reaction,the acrylate gelatin undergoes cross-linkage within seconds.Based on the physical/chemical double crosslinking strategy,the bioactive peptides achieve sustained and sequential release.The results show that the hydrogel significantly inhibits methicillin-resistant Staphylococcus aureus(MRSA)growth through the rapid release of CM11 peptides at early stage;it forms obvious growth inhibition zones against pathogenic bacterial strains.Moreover,cell counting kit-8 assay and scratch test confirm that the CM11/KLT-functionalized hydrogels promote cell proliferation and migration through the later release of KLT peptides.In a mouse skin wound infected with self-luminous MRSA,the CM11/KLT-functionalized hydrogels enhance wound healing,with rapidly bacterial infection reduction,lower expression of inflammatory factors,and neovascularization promotion.These results suggest that the rationally designed,sustained and sequential release CM11/KLT-functionalized hydrogels have huge potential in promoting the healing of multi-drug resistant bacterial infected wounds.
出处 《Nano Research》 SCIE EI CSCD 2024年第3期1737-1747,共11页 纳米研究(英文版)
基金 support from the Research Foundation of Peking University School and Hospital of Stomatology(No.PKUSS20210113) the National Natural Science Foundation of China(Nos.51972003,and 52271127) the National Key Technologies R&D Program(No.2022YFC2403203-3) Intergovernmental International Cooperation Project of Beijing Municipal Science and Technology Commission(No.Z221100002722004).
  • 相关文献

参考文献4

二级参考文献2

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部