期刊文献+

Robust, breathable, and chemical-resistant polytetrafluoroethylene (PTFE) films achieved by novel in-situ fibrillation strategy for highperformance triboelectric nanogenerators

原文传递
导出
摘要 In the era of advanced wearable electronic devices,the triboelectric nanogenerators(TENGs)as energy harvesting and self-powered sensing units hold great promise.Selecting appropriate triboelectric material is the crucial factor to optimize the performance of TENG,while polytetrafluoroethylene(PTFE)stands out as a highly versatile option among the various materials.In this study,we present an ultrafine nanofibrous PTFE(NF-PTFE)films prepared by novel in-situ fibrillation strategy as the triboelectric material in TENG devices.The innovative processing methodology facilely addresses the dilemma between high porosity and fine pore size of traditional porous PTFE films,meanwhile achieves exceptional mechanical strength,hydrophobicity,air permeability,and chemical resistance of the films.With the integration of nanofibrous PTFE films into contact-separation mode TENG and droplet-based TENG,these devices realize the peak electrical output of 131 V/10.8μA and 54 V/14μA with great durability,which surpass the performance of TENGs using traditional expanded PTFE films.Furthermore,a smart glove capable of recognizing hand gestures is proposed,which demonstrates the versatility,flexibility,and practicality of this material for potential use in smart devices.This reported NF-PTFE film provides insights for the design of high-performance TENG device for advanced wearable electrical applications.
出处 《Nano Research》 SCIE EI CSCD 2024年第3期1942-1951,共10页 纳米研究(英文版)
基金 support from the National Natural Science Foundation of China(No.52175341) Shandong Provincial Natural Science Foundation(No.ZR2022JQ24).
  • 相关文献

参考文献8

二级参考文献9

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部