期刊文献+

GPU-accelerated vector-form particle-element method for 3D elastoplastic contact of structures

原文传递
导出
摘要 A graphics processing unit(GPU)-accelerated vector-form particle-element method,i.e.,the finite particle method(FPM),is proposed for 3D elastoplastic contact of structures involving strong nonlinearities and computationally expensive contact calculations.A hexahedral FPM element with reduced integration and anti-hourglass is developed to model structural elastoplastic behaviors.The 3D space containing contact surfaces is decomposed into cubic cells and the contact search is performed between adjacent cells to improve search efficiency.A connected list data structure is used for storing contact particles to facilitate the parallel contact search procedure.The contact constraints are enforced by explicitly applying normal and tangential contact forces to the contact particles.The proposed method is fully accelerated by GPU-based parallel computing.After verification,the performance of the proposed method is compared with the serial finite element code Abaqus/Explicit by testing two large-scale contact examples.The maximum speedup of the proposed method over Abaqus/Explicit is approximately 80 for the overall computation and 340 for contact calculations.Therefore,the proposed method is shown to be effective and efficient.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第12期1120-1130,共11页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 supported by the National Natural Science Foundation of China(Nos.51908492,52008366,and 52238001) the Zhejiang Provincial Natural Science Foundation of China(Nos.LY21E080022 and LQ21E080019).
  • 相关文献

参考文献5

二级参考文献71

  • 1刘荣霞.南水北调中线丹江口水库调度水质影响模拟[J].应用基础与工程科学学报,2011,19(S1):193-200. 被引量:11
  • 2ZHAO Ying,NAN Jun,CUI Fu-yi,GUO Liang.Water quality forecast through application of BP neural network at Yuqiao reservoir[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(9):1482-1487. 被引量:21
  • 3Cerda, E., Ravi-Chandar, K., Mahadevan, L., 2002. Thin films: wrinkling of an elastic sheet under tension. Nature, 419(6907):579-580. [doi: 10.1038/419579b].
  • 4Cook, R.D., Malkus, D.S., Plesha, M.E., 1989. Concepts and Applications of Finite Element Analysis, 3rd Edition. John Wiley & Son, Toronto, p.397-404.
  • 5de Borst, R.D., Crisfield, M.A., Remmers, J.J.C., et al., 2012. Nonlinear Finite Element Analysis of Solids and Struc- tures, 2nd Edition. John Wiley & Son, Chichester, p.144-148.
  • 6Du, X., Wang, C., Wan, Z., 2006. Advances of the study on wrinkles of space membrane structures. Chinese Journal of Mechanical Engineering, 36(2): 187-199 (in Chinese). [doi: 10.3321/j.issn: 1000-0992.2006.02.003].
  • 7Epstein, M., 2003. Differential equation for the amplitude of wrinkles. A1AA Journal, 41(2):327-329. [doi:10.2514/2, 1952].
  • 8Flores, F.G., On:te, E., 2011. Wrinkling and folding analysis of elastic membranes using an enhanced rotation-free thin shell triangular element. Finite Elements in Analysis and Design, 47(9):982-990. [doi: 10.1016/j .finel.2011.03.014].
  • 9Hallquist, J.O., 2006. LS-DYNA Theoretical Manual. Liver- more Software Technology Corporation.
  • 10Huang, R., Nayyar, V., Ravi-Chandar, K., 2012. Stretch- induced stress patterns and wrinkles in hyperelastic thin sheets. APS March Meeting, Boston, Massachusetts.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部