摘要
文章研究了一种基于大数据的深度学习模型,将其应用于电力运维故障诊断设备中。该模型通过整合卷积神经网络(Convolutional Neural Networks,CNN)和递归神经网络(Recurrent Neural Network,RNN),可以快速且精准地诊断电力设备故障,从而提高电力系统的可靠性和运行效率。
This article studies a deep learning model based on big data algorithm model and applies it to power operation and maintenance fault diagnosis equipment.By integrating Convolutional Neural Network(CNN)and Recurrent Neural Network(RNN)technology,this model aims to achieve fast and accurate diagnosis of power equipment faults,thereby improving the reliability and operational efficiency of the power system.
作者
王思远
宋鑫
WANG Siyuan;SONG Xin(State Grid Beijing Electric Power Company Mentougou Power Supply Company,Beijing 102300,China)
出处
《信息与电脑》
2023年第19期43-45,共3页
Information & Computer
关键词
卷积神经网络(CNN)
递归神经网络(RNN)
电力运维故障
诊断方法
Convolutional Neural Network(CNN)
Recurrent Neural Networks(RNN)
power operation and maintenance fault
diagnostic equipment methods