摘要
目的构建下肢骨科手术后深静脉血栓形成(DVT)风险的预测模型并验证其效能。方法回顾性收集2017年1月—2019年10月无锡市中医医院收治的下肢骨科手术患者的临床资料,通过单因素和多因素逐步回归分析法筛选变量并构建列线图预测模型,评估该模型的性能(区分能力、校准能力和临床实用性)。结果本研究共纳入5773例下肢骨科手术住院患者,术后DVT发生率为0.9%。通过单因素和多因素逐步回归分析法从31个变量中最终筛选出5个变量构建预测模型,分别为年龄、红细胞平均血红蛋白浓度(MCHC)、D-二聚体、血小板分布宽度(PDW)和凝血酶时间(TT)。受试者工作特征(ROC)曲线分析结果显示,预测模型在训练集和验证集中的曲线下面积分别为0.859和0.857,具有良好的区分能力;校准曲线和决策曲线分析结果显示,该模型具有良好的校准能力和临床实用性。结论本研究构建的DVT风险预测模型具有良好的区分能力、校准能力和临床实用性,有助于医生对下肢骨科手术后DVT患者进行分类并制订早期治疗方案。
Objective To construct and validate a predictive model for the risk of deep vein thrombosis(DVT)after lower extremity orthopedic surgery.Methods Clinical records of hospitalized patients who underwent lower extremity orthopedic surgery in Wuxi Traditional Chinese Medicine Hospital from January 2017 to October 2019 were collected.The univariate and multivariate analysis with the backward stepwise method were applied to screen variables and build a nomogram prediction model,and the performance of the nomogram was evaluated with respect to its discriminant capability,calibration ability,and clinical utility.Results A total of 5773 hospitalized patients with orthopedic surgery of lower extremity were included in the study,with the incidence of DVT of 0.9%.Through single factor and multi-factor stepwise regression analysis,5 variables were selected from 31 variables to construct the prediction model,including age,mean corpuscular hemoglobin concentration(MCHC),D-dimer,platelet distribution width(PDW),and thrombin time(TT).The receiver operating characteristic(ROC)curve showed that areas under the ROC curve in the training and validation cohort were 0.859 and 0.857,respectively.The model had good calibration ability and clinical practicability.Conclusion The DVT risk prediction model constructed in this study has good differentiation ability,calibration ability and clinical practicability,which is helpful for doctors to classify DVT patients after lower extremity orthopedic surgery and formulate early treatment plan.
作者
张建楠
李荣华
周红梅
徐敏逸
蔡靓羽
ZHANG Jiangnan;LI Ronghua;ZHOU Hongmei;XU Minyi;CAI Liangyu(Department of Anesthesiology,Wuxi Traditional Chinese Medicine Hospital of Jiangsu Province,Wuxi,Jiangsu,214071)
出处
《实用临床医药杂志》
CAS
2023年第23期73-78,共6页
Journal of Clinical Medicine in Practice
基金
江苏省无锡市卫健委科研项目(MS201935)。
关键词
下肢骨科手术
深静脉血栓形成
风险预测模型
机器学习
D-二聚体
人工智能
orthopedic surgery of lower extremity
deep venous thrombosis
risk prediction model
machine learning
D-dimer
artificial intelligence