期刊文献+

基于OpenVX的计算图优化方法综述

An Overview of graph optimization methods based on OpenVX
下载PDF
导出
摘要 卷积神经网络在图像识别领域取得了巨大的成功,深度学习和卷积神经网络成为了研究的热点。神经网络模型的推理部署需要高性能的异构架构芯片,OpenVX使用基于计算图的执行模型实现在异构平台高性能计算。计算图优化技术可以使得硬件平台更加高效地执行计算图。本文首先简单介绍了OpenVX编程框架,之后从节点融合,节点转换、节点删除,节点拆分和节点交换五个方面重点介绍了计算图优化技术。最后指出了计算图优化技术的发展趋势。 Convolutional neural networks have achieved great success in the field of image recognition,deep learning and convolutional neural networks have become research hotspots.Neural network models are deployed by high-performance heterogeneous architecture chips.To achieve high-performance computing on heterogeneous platforms,an OpenVX execution model graph-based is provided.Graph optimization technology make the hardware platform execute graph more efficiently.This paper introduces the OpenVX programming framework,then it focuses on the graph optimization technology from five aspects:node fusion,node transformation,node deletion,node splitting and node swap.Finally,the development trend of graph optimization technology is pointed out.
作者 刘振 林广栋 黄光红 毛晓琦 LIU Zhen;LIN Guang-dong;HUANG Guang-hong;MAO Xiao-qi(AnHui Siliepoch Technology Coltd)
出处 《中国集成电路》 2024年第1期38-45,63,共9页 China lntegrated Circuit
关键词 深度学习 神经网络 计算图优化 deep learning neural network graph optimization
  • 相关文献

参考文献3

二级参考文献14

  • 1Khronos Group. The OpenVX provisional specification vision 1.0 [ EB/OL]. [ 2014-04-28]. https://www, khronos, org/openvx.
  • 2LINDHOLM E, NICKOLLS J, OBERMAN S, et al. NVIDIA Tes- la: a unified graphics and computing architecture [ J]. IEEE Micro, 2008, 28(2): 39-55.
  • 3LI T, XIAO L, HUANG H, et al. PAAG: a polymorphic array ar- chitecture for graphics and image processing [ C]// PAAP'12: Pro- ceedings of the 2012 Fifth International Symposium on Parallel Ar- chitectures, Algorithms and Programming. Washington, DC: IEEE Computer Society, 2012:242-249.
  • 4VEEN A H. Dataflow machine architecture [ J]. ACM Computing Surveys, 1986, 18(4): 365-396.
  • 5NIXON M. Feature extraction & image processing for computer vi- sion [M]. 3rd ed. Amsterdam: Elsevier, 2012:1-512.
  • 6COMPTON K, HAUCK S. Reconfigurable computing: a survey of systems and software [ J]. ACM Computing Surveys, 2002, 34(2) : 171 -210.
  • 7BOYD C. Data-parallel computing [J]. Graphics, 2008, 6(2) 30 - 39.
  • 8ZHANG N, CHEN Y, WANG J. Image parallel processing based on GPU [ C]//ICACC 2010: Proceedings of the 2nd International Conference on Advanced Computer Control. Piseataway: IEEE, 2010:367-370.
  • 9PATEL H. GPU accelerated real time polarimetrie image processing through the use of CUDA [ C]// NAECON 2010: Proceedings of the IEEE 2010 National Aerospace and Electronics Conference. Piseataway: IEEE, 2010: 177- 180.
  • 10冯煌.GPU图像处理的FFT和卷积算法及性能分析[J].计算机工程与应用,2008,44(2):120-122. 被引量:14

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部