期刊文献+

知识嵌入深度强化学习的6G网络决策算法

Knowledge embedding deep reinforcement learning for6G network decision making algorithm
下载PDF
导出
摘要 为了保证6G网络场景下用户的服务质量(quality of service, QoS)时延以及解决深度强化学习(deep reinforcement learning, DRL)收敛时间较长的问题,对云-边-端架构下的计算网络进行了研究。提出了多评论家深度强化学习框架,在此基础上提出知识嵌入多评论家深度强化学习算法,将无线通信知识嵌入深度强化学习,采取深度强化学习与计算网络结合的方式对网络中的计算资源和频谱资源进行分配。仿真结果表明,所提出的方法相比于传统的深度强化学习方法能够有效减少收敛时间,并且能够在信道时变的环境下,保证用户时延的基础上能够实现实时决策。 In this paper,a computing network based on cloud-edge-device architecture is studied to ensure QoS delay for users in 6G networks and address the long convergence in deep reinforcement learning.A multi-critic deep reinforcement learning framework is proposed,and on this basis,a knowledge embedding multi-critic deep reinforcement learning algorithm is proposed.The wireless communication knowledge is embedded into deep reinforcement learning,and the combination of deep reinforcement learning and computing network is adopted to allocate computing resources and spectrum resources in the network.Simulation results show that the proposed method can effectively reduce the convergence time compared to traditional deep reinforcement learning methods,and can achieve real-time decision-making based on user delay in the channel time-varying environment.
作者 张亚林 高晖 粟欣 刘蓓 ZHANG Yalin;GAO Hui;SU Xin;LIU Bei(School of Communications and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,P.R.China;School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,P.R.China;Beijing National Research Center for Information Science and Technology,Tsinghua University,Beijing 100000,P.R.China)
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第1期59-67,共9页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家重点研发计划资助项目(2020YFB1806702)~~。
关键词 6G网络 云-边-端计算 资源分配 深度强化学习(DRL) 决策 6G network cloud-edge-end computing resource allocation deep reinforcement learning(DRL) decision-making
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部