摘要
阐述数据的采集和预处理方法,通过支持向量机和决策树等机器学习算法进行模型训练,实现对设备状态的智能诊断和异常检测,并以数据可视化方式进行展示。针对巡检过程中出现的异常情况,提出基于神经网络的异常分类和定位方案。
This paper describes the methods of data collection and preprocessing,using machine learning algorithms such as support vector machines and decision trees for model training,to achieve intelligent diagnosis and anomaly detection of device status,and display it in a data visualization manner.It proposes a neural network-based anomaly classification and localization scheme for the abnormal situations that occur during the inspection process.
作者
李一帆
梁继元
LI Yifan;LIANG Jiyuan(Zhengzhou University,Henan 450066,China;State Grid Henan Electric Power Company Zhoukou Power Supply Company,Henan 466000,China)
出处
《集成电路应用》
2023年第12期320-321,共2页
Application of IC
关键词
机器学习
设备巡检
支持向量机
决策树
神经网络
machine learning
equipment inspection
support vector machine
decision tree
neural network