期刊文献+

智能感知终端在新能源场站巡检中的应用

Application of Intelligent Perception Terminal in New Energy Station Inspection
下载PDF
导出
摘要 阐述传统新能源场站场巡检方式,提出智能感知终端设计原则,分析智能感知终端功能,对比智能感知终端应用效果,探讨风机巡检优化、升压站场区巡检优化和应用效果。 This paper describes the traditional inspection methods of new energy stations,proposes the design principles of intelligent perception terminals,analyzes the functions of intelligent perception terminals,compares the application effects of intelligent perception terminals,and explores the optimization of wind turbine inspection,booster station area inspection,and application effects.
作者 亓振中 刘志强 胡彦君 刘伟 韩磊 QI Zhenzhong;LIU Zhiqiang;HU Yanjun;LIU Wei;HAN Lei(New Energy Branch of Huadian Xinjiang Power Generation Co.,Ltd.,Xinjiang 830018,China)
出处 《集成电路应用》 2023年第12期338-340,共3页 Application of IC
基金 新疆维吾尔自治区重大科技专项课题(2022A01007)。
关键词 新能源 智能巡检 智能感知终端 new energy intelligent inspection intelligent perception terminal
  • 相关文献

参考文献1

二级参考文献66

  • 1Andreopoulos A, Tsotsos J K. 50 years of objectrecognition: Directions forward [J]. Computer Vision andImage Understanding, 2013,117(8) : 827-891.
  • 2Russakovsky 0,Deng Jia, Su Hao,et al. ImageNet: Largescale visual recognition challenge [J]. International Journalof Computer Vision,2015,115(3) : 211-252.
  • 3Zhou Bolei,Lapedriza A,Xiao Jianxiong,et al. Learningdeep features for scene recognition using Places database [C]//Proc of the 28th Annual Conf on Neural InformationProcessing Systems. Cambridge, MA: MIT Press, 2014:487-495.
  • 4Xiao Jianxiong,Hays J, Ehinger K,et ai. Sun database:Large-scale scene recognition from abbey to zoo [C] //Proc ofthe IEEE Conf on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE, 2015 : 3485-3492.
  • 5Krizhevsky A, Sutskever I, Hinton G E. ImageNetclassification with deep convolutional neural networks [C] //Proc of the 26th Annual Conf on Neural InformationProcessing Systems. Cambridge MA: MIT Press, 2012 :1097-1105.
  • 6Yosinski J,Clune J, Bengio Y, et al. How transferablefeatures in deep neural networks [C] //Proc of the 28thAnnual Conf on Neural Information Processing Systems.Cambridge, MA: MIT Press, 2014 : 3320-3328.
  • 7Zeiler M D, Fergus R. Visualizing and understandingconvolutional networks [C] //Proc of the 16th European Confon Computer Vision. Berlin: Springer, 2014? 297-312.
  • 8Simonyan K, Zisserman A. Very deep convolutionalnetworks for large-scale image recognition [J], CoRR abs/1409.1556, 2014.
  • 9Szegedy C,Liu Wei, Jia Yangqing,et al. Going deeper withconvolutions [C] //Proc of the IEEE Conf on ComputerVision and Pattern Recognition. Piscataway,NJ: IEEE,2015: 1-9.
  • 10Donahue J, Jia Yangqing, Vinyals 0,et al. DeCAF : A deepconvolutional activation feature for generic visual recognition[C] //Proc of the 31st Int Conf on Machine Learning. NewYork: ACM, 2014: 647-655.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部