期刊文献+

基于隐马尔科夫模型的滑动窗口投票策略的QRS波群形态识别

A sliding window voting strategy based on hidden Markov model for morphology detection of QRS complex
下载PDF
导出
摘要 QRS波群形态识别是心电异常检测的关键环节,是疾病诊断的主要依据。目前的QRS波群形态识别方法存在识别出的形态较少、对参数敏感等问题。为此,提出一种基于隐马尔科夫的滑动窗口投票策略SWVHMM自动识别QRS波群形态。首先,将每个QRS波群划分成4个波段,对各波段设置滑动窗口提取样本;其次,将各波段波形作为状态,窗口样本聚类后的类簇中心作为观测,构建状态转移受限的隐马尔科夫模型;最后,对待预测波群的各波段窗口组合结果进行投票,识别最可能的波群形态。在专业医生标注的真实数据集上,与现存方法比较,SWVHMM F1值分别提高了5.97%,5.49%和2.27%。这表明SWVHMM不仅能识别多种QRS波群形态,而且准确度更高。 The morphological identification of QRS complex is a key in the detection of abnormal ECG,which acts as the basis for disease diagnosis.The existing QRS morphological recognition methods either identify only a few morphologies,or are sensitive to parameter settings,and the performance is not ideal.Based on this,a sliding window voting strategy based on hidden Markov model(SWVHMM)is proposed to automatically identify QRS morphologies.Firstly,each QRS complex is divided into four phases,and a sliding window is set for each phase to extract samples.Secondly,the waveform of each phase is regarded as a state,and the cluster center of the window samples acts as the observation to construct a state-constrained Hidden Marko model.Finally,we vote on the result of the combination of different phase windows to identify the target morphology pattern with the largest possibility.On the real data set labelled by professional doctors,compared with existing methods,our method improves F1 measure by 5.97%,5.49%and 2.27%,respectively.The results show that SWVHMM can identify a variety of morphology patterns with improved accuracy.
作者 宋鑫海 韩京宇 郎杭 毛毅 SONG Xin-hai;HAN Jing-yu;LANG Hang;MAO Yi(School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《计算机工程与科学》 CSCD 北大核心 2024年第2期272-281,共10页 Computer Engineering & Science
基金 国家自然科学基金(62002174)。
关键词 QRS波群 心电异常 隐马尔科夫 波段 聚类 QRS complex ECG abnormality hidden Markov wave band clustering
  • 相关文献

参考文献4

二级参考文献42

  • 1黄宛.临床心电图学(第五版)[M].北京:人民卫生出版社,2001.173.
  • 2T.C.Fu,F.L.Chung,R.Luk,et al.Financial time series indexing based on low resolution clustering.The 4th IEEE Int'l Conf.Data Mining (ICDM-2004) Workshop on Temporal Data Mining:Algorithms,Theory and Applications,Brighton,UK,2004.
  • 3M.Baglioni,U.Ferrara,A.Romei,et al.Preprocessing and mining Web log data for Web personalization.The 8th Congress of the Italian Association for Artificial Intelligence,Pisa,Italy,2003.
  • 4Carla S.Moller-Levet.Clustering of gene expression time-series.Second Year Report.http://images.ee.umist.ac.uk/carla/Report.pdf,2003.
  • 5K.Kalpakis,D.Gada,V.Puttagunta.Distance measures for effective clustering ofARIMA time-series.2001 IEEE Int'l Conf.Data Mining,San Jose,CA,2001.
  • 6F.Morchen.Time series feature extraction for data mining using DWT and DFT.Departement of Mathematics and Computer Science,Philipps-University Marburg,Tech.Rep.:33,2003.
  • 7H.Zhang,T.B.Ho,M.S.Lin.A non-parametric wavelet feature extractor for time-series classification.In:Proc.8th Pacific-Asia Conf.Knowledge Discovery and Data Mining PAKDD' 04.Lecture Notes in Artificial Intelligence.Berlin:Springer,2004.595~603.
  • 8Shivakumar Vaithyanathan,Byron Dom.Model-based hierarchical clustering.The 16th Conf.Uncertainty in Artificial Intelligence,Stanford,CA,2000.
  • 9K.Y.Yeung,C.Fraley,A.Murua,et al.Model-based clustering and data transformations for gene expression data.Bioinformatics,2001,17(10):977~ 987.
  • 10X.Ji,J.Li-Ling,Z.Sun.Mining gene expression data using a novel approach based on hidden Markov models.FEBS,2003,542(1-3):125~131.

共引文献127

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部