期刊文献+

Effect of carbonization atmosphere on electrochemical properties of nitrogen-doped porous carbon

原文传递
导出
摘要 Nitrogen atom doping has been found to enhance the electrochemical performance of porous carbon(PC).In this study,hollow tubular nitrogen-doped porous carbon(N/PC)was synthesized using polyvinylpyrrolidone as the carbon–nitrogen source and fibrous brucite as the template through carbonization.The effects of nitrogen and argon protective atmospheres on the nitrogen content,the specific surface area(SSA),and electrochemical properties of N/PC were investigated.The results showed that compared with N/FBC-Ar,N/FBC-N2 prepared in nitrogen protective atmosphere had a higher nitrogen content and a larger proportion of pyrrolic nitrogen(N-5)and pyridinic nitrogen(N-6).N/FBC-N2 displayed a specific capacitance(C)of 194.1 F·g^(−1)at 1 A·g^(−1),greater than that of N/FBC-Ar(174.3 F·g^(−1)).This work reveals that the nitrogen doping with a higher nitrogen content in nitrogen protective atmosphere is more favorable.Furthermore,a larger proportion of pyrrolic nitrogen and pyridinic nitrogen in the doped nitrogen atoms significantly enhances the electrochemical performance.
出处 《Frontiers of Materials Science》 SCIE CSCD 2023年第4期103-114,共12页 材料学前沿(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.51774016 and 52074015) Clinical Medicine Plus X-Young Scholars Project,Peking University(2022-33 2023-45) the Fundamental Research Funds for the Central Universities(China) the Fundamental Research Funds for the Central Universities(2019XKQYMS76) the Central University Basic Research Business Fund(2023QN1038).
  • 相关文献

参考文献10

二级参考文献37

  • 1Dresselhaus, M. S.; Dresselhaus, G.; Eklund, E C. Science of Fullerenes & Carbon Nanotubes; San Diego: Academic Press, March 1996; pp 20-35.
  • 2Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Nature 1996,381,678. doi: 10.1038/381678a0.
  • 3Frackowiak, E.; Metenier, K.; Bertagna, V.; Beguin, F, Appl. Phys. Lett. 2000, 77, 2421. doi: 10.1063/1.1290146.
  • 4Li, C. S.; Wang, D. Z.; Wang, X. F.; Liang, J. Carbon 2005, 43, 249.
  • 5Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787. doi: 10.1126/science.1060928.
  • 6Shiratori, Y.; Sugime, H.; Noda, S. J. Phys. Chem. C 2008, 112, 17974.
  • 7Hou, P. X.; Orikasa, H.; Yamazaki, T.; Matsuoka, K.; Tomita, A.; Setoyama, N.; Fukushima, Y.; Kyotani, T. Chem. Mater. 2005, 1, 5187.
  • 8Eduardo, C. S.; Florentino, L. U.; Emilio, M. S. A CS Nan o 2009, 3, 1913. doi: 10.1021/nn900286h.
  • 9Yang, Y.; Li, X.; Jiang, J.; Du, H.; Zhao, L.; Zhao, Y. ACS. Nano 2010, 4, 5755, doi: 10.1021/nn1014825.
  • 10Byme, J.; Li, Z.; Jones, S.; Fleming, P.; Larsson, J. A.; Morris, M. A.; Holmes, J. D. ChemPhysChem. 2011, 12, 2995, doi: 10.1002/cphc.vl2.16.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部