摘要
In many fields, we need to deal with hierarchically structured data.For this kind of data, hierarchical mixed effects model can show the correlationof variables in the same level by establishing a model for regression coefficients.Due to the complexity of the random part in this model, seeking an effectivemethod to estimate the covariance matrix is an appealing issue. Iterative generalizedleast squares estimation method was proposed by Goldstein in 1986 and wasapplied in special case of hierarchical model. In this paper, we extend themethod to the general hierarchical mixed effects model, derive its expressions indetail and apply it to economic examples.