摘要
硫化锌作为Ⅱ—Ⅵ族直接跃迁的宽带隙半导体发光材料,具有较大的禁带宽度、丰富的发光色彩和优异的红外透过性,广泛应用于光电器件、太阳能电池、红外窗和光催化降解,在光电传感、核辐射探测和医疗影像等领域有广阔的应用前景。热蒸发沉积法是一种重要的制备纳米材料的方法,其灵活多样的实验条件为制备优良性能的纳米硫化锌提供了可能。对热蒸发沉积法制备硫化锌纳米材料的研究进行梳理和总结,主要介绍热蒸发沉积法的反应和生长机制,阐述了原料、衬底和催化剂种类,以及载气类型和流速等重要实验条件对硫化锌纳米材料结构和光学性能的影响。最后,对当前热蒸发法制备硫化锌纳米材料存在的问题及其发展方向进行展望,以期为硫化锌材料制备和研究提供参考。
Zinc sulfide,as a semiconductor luminescent material in groupⅡ—Ⅵwith a broad bandgap of direct-transition,possesses a large forbidden band width,rich luminescent colors and excellent infrared transmission,and is widely used in optoelectronic devices,solar cells,infrared windows and photocatalytic degradation,showing broad application prospects in the fields of photoelectric sensing,nuclear radiation detection and medical imaging.Thermal evaporation deposition is an important approach for the preparation of nanomaterials,and its flexible and diverse experimental conditions offer the possibility of preparing zinc sulfide nanomaterials(ZSNM)with excellent properties.This paper presented a review of the research on the preparation of ZSNM by thermal evaporation deposition,including the introduction of the reaction and growth mechanism of thermal evaporation deposition.The influences of raw materials,substrate and catalyst types,as well as the important experimental conditions such as carrier gas type and flow rate on the structural and optical properties of ZSNM was described.Finally,the current problems in the preparation of ZSNM by thermal evaporation method and its development directions were discussed,in order to provide a reference for the preparation and research of zinc sulfide materials.
作者
林佳纯
熊宸玮
陶克文
马德才
林少鹏
王彪
Lin Jiachun;Xiong Chenwei;Tao Kewen;Ma Decai;Lin Shaopeng;Wang Biao(Sino-French Institute of Nuclear Engineering and Technology,Sun Yat-sen University,Zhuhai 519082;School of Physics,Sun Yat-sen University,Guangzhou 510275)
出处
《化工新型材料》
CAS
CSCD
北大核心
2024年第2期37-42,共6页
New Chemical Materials
基金
国家自然科学基金重点项目(11832019)。
关键词
硫化锌纳米材料
热蒸发沉积法
光电特性
研究进展
zinc sulfide nanomaterials
thermal evaporation deposition
optoelectronic properties
research progress