期刊文献+

隐私保护关联挖掘在职务犯罪预警中的应用

Application of privacy protection association mining in job-related crime early warning
下载PDF
导出
摘要 运用数据挖掘对职务犯罪行为进行分析,揭发事实真相,并且对其他公职人员进行预警是学者们研究的热点.利用分布式环境下关联挖掘算法对数据进行分析,为了避免隐私数据的泄漏,引入安全多方计算来保护公职人员的隐私数据.通过对公职人员数据进行分类,与职务犯罪模型进行监测和对比,提前预警发现职务犯罪行为,减少职务犯罪案件的发生.利用安全多方计算中的同态加密对敏感数据进行加密保护,将不同类的数据挖掘任务转换成特定的安全多方计算问题,使数据挖掘过程更加安全可靠. Using data mining to analyze job-related crimes,expose the truth,and give early warning to other public officials is the focus of our research.In order to avoid the leakage of private data,we introduce secure multi-party computing to protect the private data of public officials.By classifying the data of public officials,monitoring and comparing with the job-related crime model,early warning can find job-related crimes and reduce the occurrence of job-related crimes.We use homomorphic encryption in secure multi-party computing to encrypt and protect sensitive data,and transform different types of data mining tasks into specific secure multi-party computing problems.These efforts can make the data mining process more secure and reliable.
作者 刘新 徐阳 李宝山 LIU Xin;XYU Yang;LI Baoshan(Information Engineering School,Inner Mongolia University of Science and Technology,Baotou 014010,China)
出处 《内蒙古科技大学学报》 CAS 2023年第4期359-366,共8页 Journal of Inner Mongolia University of Science and Technology
基金 内蒙古纪检监察大数据实验室开放基金资助项目(IMDBD2020020) 包头市昆都仑区科技计划资助项目(YF2020013).
关键词 职务犯罪 关联挖掘 安全多方计算 隐私保护 duty crime association mining secure multiparty computing privacy protection
  • 相关文献

参考文献4

二级参考文献33

  • 1Verykios VS,Bertino E,Fovino IN,Provenza LP,Saygin Y,Theodoridis Y.State-of-the-Art in privacy preserving data mining.SIGMOD Record,2004,33(1):50-57.
  • 2Han J,Kamber M.Data Mining:Concepts and Techniques.Beijing:China Machine Press,2001.
  • 3Agrawal R,Srikant R.Privacy-Preserving data mining.In:Weidong C,Jeffrey F,eds.Proc.of the ACM SIGMOD Conf.on Management of Data.Dallas:ACM Press,2000.439-450.
  • 4Rizvi SJ,Haritsa JR.Maintaining data privacy in association rule mining.In:Bernstein PA,Ioannidis YE,Ramakrishnan R,Papadias D,eds.Proc.of the 28th Int'l Conf.on Very Large Data Bases.Hong Kong:Morgan Kaufmann Publishers,2002.682-693.
  • 5Agrawal S,Krishnan V,Haritsa JR.On addressing efficiency concerns in privacy-preserving mining.In:Lee YJ,Li JZ,Whang KY,Lee D,eds.Proc.of the 9th Int'l Conf.on Database Systems for Advanced Applications.LNCS 2973,Jeju Island:Springer-Verlag,2004.113-124.
  • 6Evfimievski A.Randomization in privacy preserving data mining.SIGKDD Explorations,2002,4(2):43-48.
  • 7Evfimievski A,Srikant R,Agrawal R,Gehrke J.Privacy preserving mining of association rules.In:Hand D,Keim D,Ng R,eds.Proc.of the 8th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.Edmonton:ACM Press,2002.217-228.
  • 8Saygin Y,Verykios VS,Clifton C.Using unknowns to prevent discovery of association rules.ACM SIGMOD Record,2001,30(4):45-54.
  • 9Oliveira SRM,Zaiane OR.Privacy preserving frequent itemset mining.In:Clifton C,EstivillCastro V,eds.Proc.of the IEEE Int'l Conf.on Data Mining Workshop on Privacy,Security and Data Mining.Maebashi:IEEE Computer Society,2002.43-54.
  • 10Kantarcioglu M,Clifton C.Privacy-Preserving distributed mining of association rules on horizontally partitioned data.IEEE Trans.on Knowledge and Data Engineering,2004,16(9):1026-1037.

共引文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部