摘要
[目的]Q235钢结构件的服役环境一般较恶劣,要对其进行适当的表面处理来提高其耐蚀性。[方法]先在Q235钢表面喷射电沉积镍,再采用0.3 mol/L硬脂酸溶液浸泡修饰12 h,得到疏水的镍镀层。通过接触角测量仪、超景深三维显微镜和场发射扫描电镜分析了不同脉冲参数下电沉积所得镍镀层表面的水接触角、粗糙度和微观形貌,并利用电化学工作站对镀层的耐腐蚀性能进行分析。[结果]随着峰值电流密度、占空比或电沉积时间的增大,Ni镀层的水接触角和表面粗糙度都呈先增大后减小的变化趋势。在峰值电流密度为0.15 A/cm^(2)、占空比为50%的条件下喷射电沉积10 min所得的Ni镀层经化学修饰后水接触角为146.3°,耐蚀性最好。[结论]在Q235钢表面采用喷射电沉积镍加化学修饰的方法可获得超疏水表面,显著提高其耐蚀性。
[Introduction]The service environment of Q235 steel structural part is usually harsh.It is necessary to take suitable surface treatment to improve the corrosion resistance of Q235 steel structural.[Method]A hydrophobic nickel coating was formed on the surface of Q235 steel by jet electrodeposition of nickel followed by chemical modification with 0.3 mol/L stearic acid solution for 12 hours.The water contact angles,surface roughness,and surface morphologies of the nickel coatings electrodeposited under different conditions were analyzed using contact angle meter,super depth-of-field three-dimensional microscope,and field emission scanning electron microscope.The corrosion resistance of nickel coatings was analyzed with electrochemical workstation.[Result]The results showed that the water contact angle and surface roughness of nickel coating were increased initially and then decreased with the increasing of peak current density,duty cycle,and electrodeposition time.The nickel coating electrodeposited at peak current density of 0.15 A/cm^(2) and duty cycle of 50%for 10 minutes featured a water contact angle of 146.3°and the best corrosion resistance.[Conclusion]A hydrophobic surface can be obtained on the surface of Q235 steel by jet electrodeposition with nickel followed by chemical modification,improving its corrosion resistance greatly.
作者
邱赟
阿达依·谢尔亚孜旦
QIU Yun;ADAYI Xieeryazidan(School of Intelligent Manufacturing Modern Industry,Xinjiang University,Urumqi 830047,China)
出处
《电镀与涂饰》
CAS
北大核心
2024年第1期7-15,共9页
Electroplating & Finishing
基金
新疆维吾尔自治区科技厅项目(ZYYD2023B03)。
关键词
碳素结构钢
喷射电沉积
镍
化学修饰
疏水性
表面粗糙度
微观形貌
耐蚀性
carbon structural steel
jet electrodeposition
nickel
chemical modification
hydrophobicity
surface roughness
micromorphology
corrosion resistance