期刊文献+

基于改进粒子群算法的换流站多协议无线数据分析及预测

Research on multi-protocol wireless data analysis and prediction of converter station based on improved particle swarm algorithm
原文传递
导出
摘要 目前直流输电正在朝着高电压大容量的技术方向发展,其在长距离输电、跨区域联网及调度灵活等方面的优势日趋显现,但由于换流站关键设备故障造成的直流系统非正常停运对电力系统造成的影响也越来越大。因此,加强对直流关键设备的感知程度,对关键设备的故障进行预判并提前进行处理,对减少直流系统非正常停运并提高供电可靠性具有重大意义。以宁夏国家电网换流站多协议无线数据为例,提出了基于灰狼算法的改进粒子群算法。实验表明,该粒子群-灰狼算法能够更精确地对换流站的各种监测数据进行预测,减小预测误差,为今后换流站的运行和维护提供了依据。 At present,DC transmission is developing toward high voltage and large capacity technology.Its advantages in longdistance transmission,cross-region networking and flexible dispatch are becoming more and more obvious,but at the same time,abnormal outage of DC system caused by critical equipment failure of converter station has a greater impact on power system.Therefore,it is of great significance to enhance the perception of critical DC equipment,to predict and handle the faults of critical DC equipment in advance,to reduce abnormal outage of DC system and to improve power supply reliability.Taking the multi-protocol wireless data of Ningxia State Grid converter station as an example,an improved particle swarm algorithm based on the gray wolf algorithm is proposed.The experimental results show that the particle swarm-wolf algorithm can more accurately predict the monitoring data of the converter station,reduce the prediction error,and provide a basis for the operation and maintenance of the converter station in the future.
作者 毛春翔 柴斌 刘若鹏 MAO Chunxiang;CHAI Bin;LIU Ruopeng(Ultra-High Voltage Company of State Grid Ningxia Electric Power Co.,Ltd,Yinchuan 750000,China)
出处 《科技导报》 CAS CSCD 北大核心 2024年第2期120-128,共9页 Science & Technology Review
基金 国网宁夏电力有限公司科技项目(5229CG20006J)。
关键词 换流站 无线数据 粒子群算法 灰狼算法 converter station wireless data particle swarm algorithm gray wolf algorithm
  • 相关文献

参考文献10

二级参考文献77

  • 1耿召里,李目.基于XGBoost-LSTM组合模型的保险理赔准备金预测方法[J].计算机应用研究,2020,37(S02):113-115. 被引量:4
  • 2王远游,郝志杰,林睿.天广直流工程换流阀冷却系统腐蚀与沉积[J].高电压技术,2006,32(9):80-83. 被引量:70
  • 3MOHAPATRA S. K. Integrated planning for next generation networks [ C]//Proc. IEEE International Symposium on Integrated Network Management Workshop. New York : IEEE Press,2009:205-210.
  • 4WANG S J ,GUO J. On-line traffic forecasting of mobile communica-tion system [ J]. Pervasive Computing Singnal Processing and Appli- cations,2010(32) :97-100.
  • 5SIVAKUMAR R,ASHOK K E. Prediction of traffic load in wireless network using time series model[ C]//Proc. 1EEE Process Automa- tion, Ccmtrol and Computing Conference. Coirnbatore: IEEE Press, 2011:1-6.
  • 6GAO J W,LENG Z W,QIN Y,et al. Short-term traffic flow forecas- ting model based on wavelet neural network [ C]//Proc. fEEE 25th Chinese Control and Decision Conference. Guiyartg: IEEE Press, 2013:5081-5084.
  • 7ZHANG R, CA1 Y P, FU X A. A network traffic prediction model based on recurreni wavelet neural network [ C ]//Proc. IEEE Com- puter Science and Network Technology Conference. Changchun: IEEE Press,2012:1630-1633.
  • 8ZHANG X L, ZHU T, LUO L, et al. Forecasting emergency depart- ment patient flow using Markov chain [ C ]// Proc. IEEE ServiceSystems and Service Management Conference. Hong Kong: IEEE Press, 2013 : 278 -282.
  • 9LI G G,ZHANG S J,YANG X B,et aL Architecture of GPP based, scalahle,large-scale C-RAN BBU pool [ J ]. G|obecom Workshops, 2012:267 -272.
  • 10汤广福,贺之渊,滕乐天,易荣,何维国.电压源换流器高压直流输电技术最新研究进展,[J].电网技术,2008,32(22):39-44. 被引量:172

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部