期刊文献+

铁路动态视频监控在调车作业过程管理中的应用

Application of Railway Dynamic Video Surveillance in Shunting Operation Process Managemen
原文传递
导出
摘要 随着铁路信息化的程度不断加深,视频监控系统在铁路运输管理中得到广泛应用,但目前的应用还都简单的停留在“存”和“看”上,为提高视频的利用率,铁路视频监控系统应在智能化采集处理及预警加大应用研究。本文对铁路动态视频监控在调车作业过程中的智能化技术应用研究,介绍系统研究内容、构架、识别功能模块、管理功能、性能指标要求,以达到对车站调车作业、行车场所等重要区域的带闸运行、人员异物侵入等进行智能判断、分析,实现动态检测识别违规行为、安全隐患风险并及时预警提示,旨在解决目前车站在安全管理、安全生产方面存在的重点和难点。 As the degree of railway informatization continues to deepen,video surveillance systems are widely used in railway transportation management.At present,the application is still simple to"save"and"see".In order to improve the utilization of video,railway video monitoring system has been intelligent acquisition,processing and early warning.This paper studies the application of intelligent technology of railway dynamic video monitoring in the process of shunting operation,and introduces the system composition,function,working principle and structure,so as to make intelligent judgment and Analysis on the operation with gates and foreign body intrusion in important areas such as station shunting operation and driving place,and realize dynamic detection,identify violations,potential safety hazards and timely warning,aiming to solve the problems of safety production Difficulties and key points in safety management.
作者 陈磊 贾国伟 谢俊濠 CHEN Lei;JIA Guowei;XIE Junhao(Xinglongchang Station of China Railway Chengdu Bureau Group Co,Ltd,Chongqing 401335,China;School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 611765,China)
出处 《综合运输》 2024年第1期100-108,共9页 China Transportation Review
基金 国家重点研发计划:轨道交通调度控制一体化与联程运输服务技术(2022YFB43005) 四川省自然科学基金:400km/h时速高速铁路列车追踪间隔时间优化关键技术研究(2022NSFSC0397)。
关键词 铁路视频 调车作业 违规行为 智能分析 预警提示 Railway video Shunting operation Violations Intelligent analysis Early warning prompt
  • 相关文献

参考文献5

二级参考文献79

  • 1杨春松,程文明,王小慧,唐连生.混合遗传算法在桥式起重机结构优化中的应用[J].起重运输机械,2006(10):19-23. 被引量:3
  • 2韩宝明,李得伟等.铁路客运专线换乘枢纽交通设计理论与方法[M].北京:北京交通大学出版社,2009.
  • 3LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
  • 4HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554.
  • 5LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations [C]// ICML '09: Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 6HUANG G B, LEE H, ERIK G. Learning hierarchical representations for face verification with convolutional deep belief networks [C]// CVPR '12: Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2012: 2518-2525.
  • 7KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]// Proceedings of Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2012: 1106-1114.
  • 8GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2014: 580-587.
  • 9LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE Computer Society, 2015: 3431-3440.
  • 10SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. [2015-11-04]. http://www.robots.ox.ac.uk:5000/~vgg/publications/2015/Simonyan15/simonyan15.pdf.

共引文献593

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部