摘要
透气舒适的传感纺织品可以检测人体汗液中的多种生物标记物,是在日常生活中实现全面健康监测的有效途径.然而,目前的可穿戴柔性电化学纺织品缺乏伸展性,这可能会导致信号不稳定或在移动过程中损坏设备.此外,这些纺织品对多种指示器的集成度有限,需要较大的表面积和大量的汗液来激活传感器.在此,我们报告了一种一体化多功能电化学生物传感器纤维,该纤维具有可拉伸性,通过微量汗液即可检测汗液中的多种生物标志物.这种生物传感器是通过将多功能碳纳米管条带以螺旋状排列的方式负载在预先拉伸的聚合物纤维芯上从而充当微电极,并且两者之间具有稳定界面.此外,通过引入超亲水鞘层,提高了生物传感器的汗液捕获效率.该生物传感器能够同时监测pH、K^(+)、Na^(+)、葡萄糖、乳酸和尿酸六种生物标记物,300%的应变下表现出稳定的传感性能.仅需1μL的汗液即可启动对六种生物标记物进行高效检测.由此编织的织物传感系统可以连续、实时地监测多种生物标记信息,从而完成人体健康状况的评估.
Breathable and comfortable sensing textiles that can detect multi-biomarkers existing in human sweat are a promising way to achieve comprehensive health monitoring in our daily life.However,current wearable and flexible elec-trochemical textiles lack stretchability,which can result in unstable signals or device damage during movement.Ad-ditionally,these textiles have limited integration of multiple indicators,needing a large surface area and a significant amount of sweat to activate the sensors.Herein,we report an integrated all-in-one multifunctional electrochemical bio-sensor fiber constructed with a helical core-sheath structure,offering the stretchability and ability to detect biomarkers with trace amounts of sweat.The biosensor was fabricated by arranging multi-functionalized carbon nanotube strips in a spiral pattern alongside a pre-stretched polymer fiber core acting as microelectrodes with robust interface.Additionally,a super-hydrophilic sheath layer is incorporated to enhance the sweat capture efficiency of the biosensor.The biosensor has the capability to simultaneously monitor six biomarkers including pH,K^(+),Na^(+),glucose,lactate and uric acid,de-monstrating stable sensing performance under 300%strain.Merely 1μL of sweat is needed to initiate the detection of all six biomarkers.The resulting textile sensing system presents continuous and real-time monitoring of multi-biomarker in-formation,allowing for the assessment of our health condi-tion.
作者
张安宁
周靓靓
梁琦敏
王欣
胡晓康
贾康康
储宏伟
罗勇锋
丘龙斌
彭慧胜
何思斯
Anning Zhang;Liangliang Zhou;Qimin Liang;Xin Wang;Xiaokang Hu;Kangkang Jia;Hongwei Chu;Yongfeng Luo;Longbin Qiu;Huisheng Peng;Sisi He(Shenzhen Key Laboratory of Flexible Printed Electronics Technology,School of Science,Harbin Institute of Technology(Shenzhen),Shenzhen 518055,China;Department of Mechanical and Energy Engineering,Southern University of Science and Technology,Shenzhen 518055,China;Hunan Province Key Laboratory of Materials Surface&Interface Science and Technology,College of Science,Material Science and Engineering School,Central South University of Forestry and Technology,Changsha 410004,China;State Key Laboratory of Molecular Engineering of Polymers,Department of Macromolecular Science and Laboratory of Advanced Materials,Fudan University,Shanghai 200438,China)
基金
financially supported by the National Natural Science Foundation of China (52103300)
Guangdong Basic and Applied Basic Research Foundation (2023A1515010572)
Shenzhen Science and Technology Program (JCYJ20210324132806017 and GXWD20220811163904001)。