期刊文献+

Programmable repulsive potential for tight-binding from Chen-Möbius inversion theorem

原文传递
导出
摘要 An accurate total energy calculation is essential in materials computation.To date,many tight-binding(TB)approaches based on parameterized hopping can produce electronic structures comparable to those obtained using first-principles calculations.However,TB approaches still have limited applicability for determining material properties derived from the total energy.That is,the predictive power of the TB total energy is impaired by an inaccurate evaluation of the repulsive energy.The complexity associated with the parametrization of TB repulsive potentials is the weak link in this evaluation.In this study,we propose a new method for obtaining the pairwise TB repulsive potential for crystalline materials by employing the Chen-Möbius inversion theorem.We show that the TB-based phonon dispersions,calculated using the resulting repulsive potential,compare well with those obtained by first-principles calculations for various systems,including covalent and ionic bulk materials and twodimensional materials.The present approach only requires the first-principles total energy and TB electronic band energy as input and does not involve any parameters.This striking feature enables us to generate repulsive potentials programmatically.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第1期71-83,共13页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.12274035,and 11874088) supported by the Fundamental Research Funds for the Central Universities。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部