摘要
Immunotherapy brings new hope for tumor treatment by inducing immunogenic cell death(ICD)of tumor cells.However,insufficient immunogenicity and low immune response rate greatly limit antitumor immunity.Herein,by optimizing the composition and morphology,the rational design of Janus nanoparticles composed of Fe_(3)O_(4) nanospheres and SiO_(2)nanorods was realized for enhanced cancer immunotherapy through amplified ICD.After glucose oxidase(GOx)was loaded by the Janus nanoparticles,the resultant M-FS-GOx consumes glucose at tumor sites to generate gluconic acid and hydrogen peroxide(H_(2)O_(2))for starvation therapy while the H_(2)O_(2)supply promotes the production of highly toxic·OH to achieve effective chemodynamic therapy(CDT).Under a 1064 nm light irradiation,the photothermal effect of M-FS-GOx enhances the enzyme activity of GOx for improved starvation therapy.Furthermore,both tumor-associated antigens released during the process of ICD and the intrinsic immunoadjuvant property of M-FS-GOx stimulate dendritic cell maturation to activate antitumor immune responses.This work provides a promising strategy for the construction of Janus nanoparticles to achieve enhanced cancer immunotherapy through combination therapy-amplified ICD.
基金
This work was supported by the National Natural Science Foundation of China(Grant Nos.52173271,52221006,and 51922022)
Beijing Outstanding Young Scientist Program(Grant No.BJJWZYJH0120191001-0024)
the Fundamental Research Funds for the Central Universities(Grant No.BHYC1705A).