摘要
Let M be a 3×3 integer matrix which is expanding in the sense that each of its eigenvalues is greater than 1 in modulus and let D?Z^(3)be a digit set containing|det M|elements.Then the unique nonempty compact set T=T(M,D)defined by the set equation MT=T+D is called an integral self-affine tile if its interior is nonempty.If D is of the form D={0,v,...,(|det M|-1)v},we say that T has a collinear digit set.The present paper is devoted to the topology of integral self-affine tiles with collinear digit sets.In particular,we prove that a large class of these tiles is homeomorphic to a closed 3-dimensional ball.Moreover,we show that in this case,T carries a natural CW complex structure that is defined in terms of the intersections of T with its neighbors in the lattice tiling{T+z:z∈Z^(3)}induced by T.This CW complex structure is isomorphic to the CW complex defined by the truncated octahedron.
基金
supported by a grant funded by the Austrian Science Fund and the Russian Science Foundation(Grant No.I 5554)
supported by National Natural Science Foundation of China(Grant No.12101566)。