摘要
现实中的多目标优化问题会随着时间或环境的变化而发生改变,因此在全周期优化过程中,环境变化检测和算法响应是求解动态多目标优化问题的两大关键步骤,为此重点对动态多目标进化算法方面的研究进行总结.为有效求解动态多目标优化问题,大量追踪性能优良的动态多目标进化算法在近20年里被提出,但是很少有文献从时空角度对已有研究进行分析和报道,鉴于此,从该视角对动态多目标进化算法研究进行综述.首先介绍动态多目标优化的基本概念、问题和性能指标;然后从时空视角对近5年提出的动态多目标进化算法研究进行分别介绍;最后列出目前动态多目标进化算法方面研究存在的一些挑战,并对未来研究进行展望.
Actual multi-objective optimization problems change with time or environments(called as dynamic multi-objective optimization problems,DMOPs),thus detection of environmental change and algorithm response are two key steps to solve DMOPs during the full-cycle optimization.This paper focuses on summarizing the research on the latter one,i.e.,dynamic multi-objective evolutionary algorithms(DMOEAs).To solve DMOPs effectively,a large number of DMOEAs with good tracking performance have been proposed in the past two decades.However,few literatures analyse and report the existing studies from the spatiotemporal perspective.Therefore,this paper introduces review of research on DMOEAs from this view.First,the basic concepts,DMOPs,and performance indicators are introduced.Then,the research on DMOEAs proposed in the past five years are introduced from the spatiotemporal view.Finally,some current challenges exist in DMOEAs are given,and future studies are prospected.
作者
范勤勤
李盟
黄文焘
姜庆超
FAN Qin-qin;LI Meng;HUANG Wen-tao;JIANG Qing-chao(Logistics Research Center,Shanghai Maritime University,Shanghai 201306,China;Key Laboratory of Control of Power Transmission and Conversion of Ministry of Education,Shanghai Jiao Tong University,Shanghai 200240,China;Key Laboratory of Smart Manufacturing in Energy Chemical Process of Ministry of Education,East China University of Science and Technology,Shanghai 200237,China)
出处
《控制与决策》
EI
CSCD
北大核心
2024年第1期1-16,共16页
Control and Decision
基金
上海市浦江人才计划项目(22PJD030)
国家自然科学基金项目(61603244)
国家自然科学基金山东联合基金项目(U2006228)。
关键词
进化计算
动态多目标优化
全周期优化
时变
空变
evolutionary computation
dynamic multi-objective optimization
full cycle optimization
time-varying
space-variant