期刊文献+

城市轨道交通超短时客流预测模型研究及应用

Research and Application of Ultra-short-term Passenger Flow Prediction Model for Urban Rail Transit
下载PDF
导出
摘要 超短时客流预测是城市轨道交通调度指挥中的关键基础性问题,现有的方法及模型各有优缺点,尚不能很好地满足现场实际工作需要。首先,基于上海城市轨道交通海量客流数据,对客流特征及其影响因素进行提取与分析,在此基础上引入“K最近邻算法”研究建立超短时客流预测模型。以上海城市轨道交通网络为实际背景的初步应用及结果分析表明,研究成果能对运营当天早晚高峰时段(7:00—10:00和17:00—20:00)客流做出超短时预测,具有较好的准确性、时效性和实用性,为调度指挥提供有力的客流数据支撑,助力构建城市轨道交通网络智慧客运组织调度系统。 Ultra-short-term passenger flow prediction is a key fundamental issue in the dispatch and command of urban rail transit.The existing methods and models have their own advantages and disadvantages,and cannot fully meet the needs of practical work on site.Firstly,based on the massive passenger flow data of Shanghai urban rail transit,this paper extracts and analyzes passenger flow characteristics and influence factors,and introduces the K-nearest neighbor algorithm to study and establish an ultra-short-term passenger flow prediction model.The initial application and result analysis based on the Shanghai urban rail transit network as the actual background demonstrate that the research results have good accuracy,timeliness,and practicality,providing strong passenger flow data(during 7:00—10:00 and 17:00—20:00)support for dispatch and command,and helping to build an intelligent transportation organization and scheduling system for urban rail transit network.
作者 费佳莹 严俊钦 陈佳 FEI Jiaying;YAN Junqin;CHEN Jia(Shanghai Rail Transit Operation&Management Center,Shanghai 200070,China;Shanghai INESA Network Co.,Ltd,Shanghai 200233,China)
出处 《交通与运输》 2024年第1期47-52,共6页 Traffic & Transportation
关键词 城市轨道交通 超短时客流预测 K最近邻算法 历史特征日 相似参照日 Urban rail transit Ultra-short-time passenger flow prediction K-nearest neighbour algorithm Historic characteristic day Similar reference day
  • 相关文献

参考文献4

二级参考文献29

  • 1王志平,张海帆.中国工业时间序列分析及预测[J].统计与决策,2004,20(8):17-18. 被引量:6
  • 2吴祥云,刘灿齐.轨道交通客流量均衡分配模型与算法[J].同济大学学报(自然科学版),2004,32(9):1158-1162. 被引量:58
  • 3周淮,王如路.上海轨道交通运营客流简析[J].地下工程与隧道,2005(4):1-9. 被引量:14
  • 4姚智胜,邵春福.基于状态空间模型的道路交通状态多点时间序列预测[J].中国公路学报,2007,20(4):113-117. 被引量:24
  • 5李得伟,韩宝明.行人交通[M].北京:人民交通出版社.2011:403-405.
  • 6Tsai, 丁. M. Lee, C. K.. Wei. Chien Hung Neuralnetwork based temporal feature models forshort-term railway passenger demand forecasting[J]. Expert Systems with Applications, 2009,36(2):3728-3736.
  • 7陈茔.城市轨道交通运行状况If估研究[D].南京:东南大学,2011.
  • 8Srinivasan S., Haris N. K., Moshe B., et al.Simulation-based dynamic traffic assignment forshort-term planning applications [J]. SimulationModelling Practice and Theory,2011, 19 (1):450-462.
  • 9Williams B. M., Durvasula P. K., Brown D. E..Urban freeway traffic flow Prediction: applicationof seasonal autoregressive integrated movingaverage and exponential smoothing models [J].Transportation Research Record, 1998, 1644:132-141.
  • 10Smith B. L., Williams B. M.,Oswald R. K.Comparison of parametric and nonparametric modelsfor traffic flow forecasting[J]. TransportationResearch Part C,2002,10(4): 303-321.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部