期刊文献+

辐射制冷技术在夏热冬冷地区的应用潜力分析:以杭州为例

Potential of radiative cooling:a case study in Hangzhou
下载PDF
导出
摘要 为探究辐射制冷在以杭州为代表的常年高湿度的我国夏热冬冷地区的应用潜力,本文基于选择性独立法估算并分析了相对湿度对辐射制冷潜能的影响。计算结果表明,温度的升高及相对湿度的增加会显著降低辐射制冷技术的潜力,其中相对湿度的影响更为明显。杭州在近二十年来的最差工况下平均黑体辐射降温功率可达47 W/m^(2),平均天空温降约为8℃,在典型年的春秋两季具有良好的制冷潜力,辐射制冷技术可作为过渡季节的降温补偿工具。因此,辐射制冷技术在杭州等夏热冬冷地区具有一定的应用前景。 To explore the potential of passive radiative cooling in hot-summer and cold-winter zone represented by Hangzhou,the influence of relative humidity on the potential of passive radiative cooling was preliminarily evaluated using the selective independent approach.An increase in temperature and relative humidity significantly reduced the potential of passive radiative cooling technology,and the influence of relative humidity was more obvious.Hangzhou has an average blackbody radiation cooling power of up to 47 W/m^(2)under the worst working conditions in the last two decades,with an average sky temperature drop of about 8℃.It has a good cooling potential in the spring and fall seasons of a typical year,and the radiative cooling technology can be used as a cooling compensation tool in the transitional season.Therefore,radiation refrigeration technology has certain application prospects in hot summer and cold winter areas such as Hangzhou.
作者 吴娴 王如华 戴胜娟 王泽业 瞿铭良 王亮 范利武 俞自涛 WU Xian;WANG Ruhua;DAI Shengjuan;WANG Zeye;QU Mingliang;WANG Liang;FAN Liwu;YU Zitao(College of Energy Engineering,Zhejiang University,Hangzhou 310027,China;Zhejiang Second Construction Group Co.,Ltd.,Jiaxing,315202,China)
出处 《能源工程》 2024年第1期25-34,共10页 Energy Engineering
基金 浙江省住房和城乡建设厅建设科研项目(2022K052)。
关键词 辐射制冷 夏热冬冷地区 相对湿度 天空温降 passive radiative cooling hot-summer and cold-winter zone relative humidity sky temperature depression
  • 相关文献

参考文献2

二级参考文献15

  • 1Hall I J, Prairie R R, Anderson H E, et al. Generation of typical meteorological years for 26 Solmet stations. In:ASHRAE Trans. 1979,85(2). 507- 517.
  • 2Filkenstein J M, Schafer R E. Improved goodness to fit tests.Biometrica, 1971,58: 641 - 645.
  • 3Argiriou A, Lykoudis S, Kontoyiannidis S, et al. Comparison of methodologies for TMY generation using 20 years data for Athens, Greece. Solar Energy,1999, 66(1):33 - 45.
  • 4Pissimanis D, Karras G, Notaridou V,et al. The generation of a "typical meteorological year" for the city of Athens. Solar Energy, 1988,40(5) :405 - 411.
  • 5Lam Joseph C, Hui Sam C M, Chan Apple L S. A statistical approach to the development of a typical meteorological year for Hong Kong. Architectural Science Review, 1996,39:201 -2O9.
  • 6Petrakis M, Kambezidis H D, Lykoudis S, et al. Generation of a "typical meteorological year" for Nicosia, Cyprus.Renewable Energy, 1998,13(3) :381 - 388.
  • 7Uner Merter, Ileri Arif. Typical weather data of main Turkish cities for energy application. International J of Energy Research, 2000,24 : 727 - 748.
  • 8Yang Hongxing, Lti Lin. The development and comparisons of typical meteorological years for building energy simulation and renewable energy applications. In: ASHRAE Trans. 2004,110(2). 424 - 431.
  • 9Chow W K, Fong S K. Simulation of energy use in a building with three weather files of Hong Kong. Energy Engineering,1993,2:30 - 54.
  • 10Wong W L, Ngan K H. Selection of an "example weather year" for Hong Kong. Energy and Buildings, 1993, 19:313 -316.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部