期刊文献+

基于机器学习的高效率集成电路DFT技术研究

Research on High-Efficiency Integrated Circuit DFT Technology Based on Machine Learning
下载PDF
导出
摘要 本文提出了一种基于机器学习的高效率集成电路可测性设计技术.该技术以自动收集的数据作为训练集,以决定系数为评价指标,为每类目标参数选择出最佳预测模型,并预测出基于不同配置参数的可测性设计结构所对应的目标参数,最后使用最优配置推断技术,以目标参数差值的加权和作为衡量指标,输出最优的可测性设计配置参数.实验数据表明,针对可测性设计技术中最重要的测试覆盖率参数,平均预测误差仅为0.0756%;根据目标参数差值的加权和的最小值情况,实现高效推断芯片可测性设计的最优配置参数.该技术的预测效果具有高可靠性,能够在保证高测试覆盖率的前提下,有效减少测试成本和面积开销等. This paper proposes a high-efficiency design for test(DFT)technique for integrated circuits based on machine learning.The technology uses the automatically collected data as the training set and determination coefficient as the evaluation index,selects the best prediction model for each type of target parameters,and predicts the target parameters corresponding to the design for test structure based on different configuration parameters,and finally uses the optimal configuration.The inference technology uses the weighted sum of difference value of target parameters as a measure to output the optimal design for test configuration parameters.The experimental data shows that for the most important test coverage parameter in design for test technology,the average prediction error is only 0.0756%;according to the minimum value of weighted sum of difference value of target parameters,the optimal configuration parameters of the design for test can be efficiently inferred.The prediction effect of this technology has high reliability,and can effectively reduce the test cost and area overhead on the premise of ensuring high test coverage.
作者 蔡志匡 赵泽宇 杨涵 王子轩 郭宇锋 CAI Zhi-kuang;ZHAO Ze-yu;YANG Han;WANG Zi-xuan;GUO Yu-feng(College of Integrated Circuit Science and Engineering,Nanjing University of Posts and Telecommunications,Nanjing,Jiangsu 210023,China;National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology,Nanjing University of Posts and Telecommunications,Nanjing,Jiangsu 210023,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2023年第12期3473-3482,共10页 Acta Electronica Sinica
基金 国家重点研发计划项目(No.2018YFB2202005) 国家自然科学基金(No.61974073,No.U22B2024)。
关键词 可测性设计 测试压缩 测试覆盖率 测试时间 机器学习 design for test test compression test coverage test time machine learning
  • 相关文献

参考文献2

二级参考文献60

  • 1A Huete,K Didan,T Miura,E.P Rodriguez,X Gao,L.G Ferreira.Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment . 2002 (1)
  • 2Anatoly A. Gitelson,Yoram J. Kaufman,Mark N. Merzlyak.Use of a green channel in remote sensing of global vegetation from EOS-MODIS[J]. Remote Sensing of Environment . 1996 (3)
  • 3Driss Haboudane,John R Miller,Elizabeth Pattey,Pablo J Zarco-Tejada,Ian B Strachan.Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment . 2004 (3)
  • 4Fei Li,Yuxin Miao,Simon D. Hennig,Martin L. Gnyp,Xinping Chen,Liangliang Jia,Georg Bareth.Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages[J]. Precision Agriculture . 2010 (4)
  • 5P.M. Hansen,J.K. Schjoerring.Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment . 2003 (4)
  • 6N.H Broge,E Leblanc.Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment . 2001 (2)
  • 7Geneviève Rondeaux,Michael Steven,Frédéric Baret.Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment . 1996 (2)
  • 8Xiu-liang Jin,Ke-ru Wang,Chun-hua Xiao,Wan-ying Diao,Fang-yong Wang,Bing Chen,Shao-kun Li.Comparison of two methods for estimation of leaf total chlorophyll content using remote sensing in wheat[J]. Field Crops Research . 2012
  • 9Goel N S,Quin W.Influences of canopy architecture on relationships between various vegetation indexes and LAI and FPAR:a computer simulation. Remote Sensing of Environment . 1994
  • 10Baret F,,Buis S.Estimating canopy characteristics from remote sensing observations:review of methods and associated problems. Advances in Land Remote Sensing:System,Modeling,Inversion and Application . 2008

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部