期刊文献+

面向遥感图像的多阶段特征融合目标检测方法 被引量:1

Multi-Stage Feature Fusion Object Detection Method for Remote Sensing Image
下载PDF
导出
摘要 遥感图像目标具有多尺度、大横纵比、多角度等特性,给传统的目标检测方法带来了新的挑战.针对现有方法应用于目标尺度小、横纵比例不均衡的遥感图像时存在的精度下降问题,提出一种基于多阶段特征融合的目标检测方法MF2M(Multi-stage Feature Fusion Method).该方法在一阶段对特征图通道进行组合拆分,再采用卷积拼接的融合方式聚合通道维度的特征,从而强化输出的目标空间轮廓信息;二阶段设计多比例的非对称卷积块,增强大横纵比目标的高维全局特征,改善目标与检测框匹配粗糙的问题,同时利用串并行相结合的处理方式减少冗余卷积参数,加速网络收敛.在DOTA(Dataset for Object deTection in Aerial images)数据集上的实验结果表明,基准方法引入MF2M后,在保证检测速度的前提下精度指标mAP提高至76.44%,结果验证了所提算法的有效性与可靠性. The remote sensing image objects has the characteristics of multi-scale,large aspect ratio,multi-angle and so on,which brings new challenges to traditional object detection methods.To solve the problem of loss of accuracy when existing methods are applied to remote sensing images with small object scales and unbalanced aspect ratios,an object detection method based on dual-stage feature fusion—MF2M(Multi-stage Feature Fusion Method)is proposed.This method combines and splits the feature map channels in first stage,and then adopts the fusion method of convolution splicing to aggregate the characteristics of the channel dimensions,thereby enhancing the output object spatial contour information;in the second stage,we design a multi-scale asymmetric convolution blocks,enhancing the high-dimensional global features of large aspect ratio targets,improving the problem of rough matching between the target and the detection frame,and using a combination of serial and parallel processing to reduce redundant convolution parameters.Finally,we achieve the effect of accelerating network convergence.The experimental results on the DOTA(Dataset for Object deTection in Aerial images)dataset show that after the benchmark method is introduced into MF2M,the accuracy index mAP is increased to 76.44%under the premise of ensuring the detection speed.The results verify the effectiveness and reliability of the algorithm.
作者 陈立 张帆 郭威 黄赟 CHEN Li;ZHANG Fan;GUO Wei;HUANG Yun(Information Engineering University,Zhengzhou,Henan 450001,China;National Digital Switching System Engineering Technology Research Center,Zhengzhou,Henan 450002,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2023年第12期3520-3528,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61521003)。
关键词 遥感图像 目标检测 多阶段特征融合 通道拼接 非对称卷积 remote sensing image object detection double-stage feature fusion channel splicing asymmetric convolution
  • 相关文献

参考文献2

二级参考文献8

共引文献149

同被引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部